首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mast cells are the principal effector cells involved in the allergic response, through the release of histamine. We investigated the effect of eriodictyol, derived from the painted maple and yerba santa, on mast cell degranulation and on an allergic response in an animal model. We also investigated its effect on the expression of the ceramide kinase (CERK) involved in calcium-dependent degranulation, and on ceramide activation by multiple cytokines. Eriodictyol suppressed the release of beta-hexosaminidase, a marker of degranulation, and the expression of interleukin (IL)-4 mRNA. It inhibited the expression of CERK mRNA, reduced the ceramide concentration in antigen-stimulated mast cells, and suppressed the passive cutaneous anaphylaxis (PCA) reaction in mice in a dose-dependent manner. These results suggest that eriodictyol can inhibit mast cell degranulation through inhibition of ceramide kinase, and that it might potentially serve as an anti-allergic agent.  相似文献   

2.
Ceramide has been suggested to function as a mediator of exocytosis in response to the addition of a calcium ionophore from PC12 cells. Here, we show that although cell-permeable C(6)-ceramide or a calcium ionophore alone did not increase either the degranulation of serotonin or the release of arachidonic acid (AA) from RBL-2H3 cells, their combined effect significantly stimulated these processes in a time- and dose-dependent manner. This effect was inhibited by the presence of an exogenous calcium chelator and significantly suppressed by the CERK inhibitor (K1) and phospholipase A(2) (PLA(2)) inhibitors. Moreover, cytosolic PLA(2) GIVA (cPLA(2) GIVA) siRNA-transfected RBL-2H3 cells showed a lower level of serotonin release than scramble siRNA-transfected cells. Little is known about the regulation of degranulation proximal to the activation of cytosolic phospholipase A(2) GIVA, the initial rate-limiting step in RBL-2H3 cells. In this study, we suggest that CERK, ceramide-1-phosphate, and PLA(2) are involved in degranulation in a calcium-dependent manner. Inhibition of p44/p42 mitogen-activated protein kinase partially decreased the AA release, but did not affect degranulation. Furthermore, treatment of the cells with AA (ω-6, C20:4), not linoleic acid (ω-6, C18:2) or α-linolenic acid (ω-6, C18:3), induced degranulation. Taken together, these results suggest that ceramide is involved in mast cell degranulation via the calcium-mediated activation of PLA(2).  相似文献   

3.
We recently demonstrated that the activation of ceramide kinase (CERK) and the formation of its product, ceramide 1-phosphate (C1P), are necessary for the degranulation pathway in mast cells and that the kinase activity of this enzyme is completely dependent on the intracellular concentration of Ca(2+) (Mitsutake, S., Kim, T.-J., Inagaki, Y., Kato, M., Yamashita, T., and Igarashi, Y. (2004) J. Biol. Chem. 279, 17570-17577). Despite the demonstrated importance of Ca(2+) as a regulator of CERK activity, there are no apparent binding domains in the enzyme and the regulatory mechanism has not been well understood. In the present study, we found that calmodulin (CaM) is involved in the Ca(2+)-dependent activation of CERK. The CaM antagonist W-7 decreased both CERK activity and intracellular C1P formation. Additionally, exogenously added CaM enhanced CERK activity even at low concentrations of Ca(2+). The CERK protein was co-immunoprecipitated with an anti-CaM antibody, indicating formation of intracellular CaM.CERK complexes. An in vitro CaM binding assay also demonstrated Ca(2+)-dependent binding of CaM to CERK. These results strongly suggest that CaM acts as a Ca(2+) sensor for CERK. Furthermore, a CaM binding assay using various mutants of CERK revealed that the binding site of CERK is located within amino acids 422-435. This region appears to include a type 1-8-14B CaM binding motif and is predicted to form an amphipathic helical wheel, which is utilized in CaM recognition. The expression of a deletion mutant of CERK that contained the CaM binding domain but lost CERK activity inhibited the Ca(2+)-dependent C1P formation. These results suggest that this domain could saturate the CaM and hence block Ca(2+)-dependent activation of CERK. Finally, we reveal that in mast cell degranulation CERK acts downstream of CaM, similar to CaM-dependent protein kinase II, which had been assumed to be the main target of CaM in mast cells.  相似文献   

4.
Ceramide kinase (CERK) catalyzes the conversion of ceramide to ceramide 1-phosphate (C1P) and is known to be activated by calcium. Although several groups have examined the functions of CERK and its product C1P, the functions of C1P and CERK are not understood. We studied the RBL-2H3 cell line, a widely used model for mast cells, and found that CERK and C1P are required for activation of the degranulation process in mast cells. We found that C1P formation was enhanced during activation induced by IgE/antigen or by Ca(2+) ionophore A23187. The formation of C1P required the intracellular elevation of Ca(2+). We generated RBL-2H3 cells that stably express CERK, and when these cells were treated with A23187, a concomitant C1P formation was observed and degranulation increased 4-fold, compared with mock transfectants. The cell-permeable N-acetylsphingosine (C(2)-ceramide), a poor substrate of CERK, inhibited both the formation of C1P and degranulation, indicating that C1P formation was necessary for degranulation. Exogenous introduction of CERK into permeabilized RBL-2H3 cells caused degranulation. We identified a cytosolic localization of CERK that provides exposure to cytosolic Ca(2+). Taken together, these results indicate that C1P formation is a necessary step in the degranulation pathway in RBL-2H3 cells.  相似文献   

5.
Previous studies demonstrated that Clonochis sinensis-derived crude antigens suppress development of allergic responses. We investigated the effects of C. sinensis venom allergen-like (CsVAL) proteins on immune-modulating activities in allergic inflammatory response. Using RBL-2H3 rat mast cells, we demonstrated that CsVAL inhibits antigen-induced β-hexosaminidase release from immunoglobulin E-sensitized RBL-2H3 cells, and this inhibitory activity occurs by suppressing Lyn phosphorylation and intracellular reactive oxygen species production. In addition, CsVAL peptide treatment inhibits activation of protein kinase C-α and extracellular signal-regulated kinase 1/2, which are involved in degranulation of immunoglobulin E-sensitized mast cells. Furthermore, immunization with CsVAL suppressed development of skin inflammation by assessing ear thickness and cutaneous infiltration by eosinophils and mast cells in oxazolone-induced contact hypersensitivity in vivo mouse model. These results suggest that CsVAL is a promising candidate as an effective mast cell inhibitor for allergic and inflammatory diseases.  相似文献   

6.
Mast cells are immune cells derived from hematopoietic progenitors. When they are activated by stimuli, they immediately release granule-associated mediators, leading to allergic inflammation. Several factors controlling mediator release have been identified; however, little is known whether microRNAs (miRNAs) are involved in this process. miRNAs are a small class of non-coding RNAs that negatively regulate gene expression. In this study, we investigated the relationship between miRNAs and degranulation in LAD2 cells, a human mast cell line. We demonstrated that silencing of Dicer, a key enzyme of miRNA biogenesis, attenuates degranulation, indicating that miRNAs are involved in mast cell degranulation. We furthermore discovered that the overexpression of miR-142-3p enhances FcεRI-mediated degranulation and that miR-142-3p rescues the reduction of degranulation by silencing Dicer. Similar effects were observed in bone marrow-derived mast cells obtained miR-142-3p-deficient mice. Our studies suggest that miR-142-3p is a potential therapeutic target in pathological conditions caused by mast cells, such as mastocytosis and allergies.  相似文献   

7.
Nunomura S  Yoshimaru T  Ra C 《Life sciences》2008,83(7-8):242-249
Adenosine has been shown to enhance mast cell degranulation when added together with an antigen. Such augmentation of mast cell activation is relevant to exacerbation of allergic asthma symptoms. Na-Tosyl-Phe chloromethyl ketone (TPCK) is a chymotrypsine-like chymase inhibitor, which has anti-inflammatory properties. In this study, we investigated the effects of TPCK on mast cell synergistic degranulation induced by antigen and adenosine. Here, we report that TPCK almost completely suppressed enhanced degranulation by inhibiting granule movement. Consistent with this, intraperitoneal administration of TPCK resulted in significant amelioration of passive cutaneous anaphylaxis in mice. Furthermore, we demonstrated that TPCK completely inhibited Thr308 phosphorylation of protein kinase B in mast cells stimulated with antigen and adenosine. These results provide a novel action of TPCK for the prevention of mast cell degranulation induced by antigen and adenosine.  相似文献   

8.
Mast cells, activated by Ag via FcεRI, release an array of proinflammatory mediators that contribute to allergic disorders, such as asthma and anaphylaxis. The KIT ligand, stem cell factor (SCF), is critical for mast cell expansion, differentiation, and survival, and under acute conditions, it enhances mast cell activation. However, extended SCF exposure in vivo conversely protects against fatal Ag-mediated anaphylaxis. In investigating this dichotomy, we identified a novel mode of regulation of the mast cell activation phenotype through SCF-mediated programming. We found that mouse bone marrow-derived mast cells chronically exposed to SCF displayed a marked attenuation of FcεRI-mediated degranulation and cytokine production. The hyporesponsive phenotype was not a consequence of altered signals regulating calcium flux or protein kinase C, but of ineffective cytoskeletal reorganization with evidence implicating a downregulation of expression of the Src kinase Hck. Collectively, these findings demonstrate a major role for SCF in the homeostatic control of mast cell activation with potential relevance to mast cell-driven disease and the development of novel approaches for the treatment of allergic disorders.  相似文献   

9.
PGE(2) is an endogenously synthesized inflammatory mediator that is over-produced in chronic inflammatory disorders such as allergic asthma. In this study, we investigated the regulatory effects of PGE(2) on mast cell degranulation and the production of cytokines relevant to allergic disease. Murine bone marrow-derived mast cells (BMMC) were treated with PGE(2) alone or in the context of IgE-mediated activation. PGE(2) treatment alone specifically enhanced IL-6 production, and neither induced nor inhibited degranulation and the release of other mast cell cytokines, including IL-4, IL-10, IFN-gamma, and GM-CSF. IgE/Ag-mediated activation of BMMC induced the secretion of IL-4, IL-6, and GM-CSF, and concurrent PGE(2) stimulation synergistically increased mast cell degranulation and IL-6 and GM-CSF, but not IL-4, production. A similar potentiation of degranulation and IL-6 production by PGE(2), in the context of IgE-directed activation, was observed in the well-established IL-3-dependent murine mast cell line, MC/9. RT-PCR analysis of unstimulated MC/9 cells revealed the expression of EP(1), EP(3), and EP(4) PGE receptor subtypes, including a novel splice variant of the EP(1) receptor. Pharmacological studies using PGE receptor subtype-selective analogs showed that the potentiation of IgE/Ag-induced degranulation and IL-6 production by PGE(2) is mediated through EP(1) and/or EP(3) receptors. Our results suggest that PGE(2) may profoundly alter the nature of the mast cell degranulation and cytokine responses at sites of allergic inflammation through an EP(1)/EP(3)-dependent mechanism.  相似文献   

10.
Mast cell function and dysregulation is important in the development and progression of allergic and autoimmune disease. Identifying novel proteins involved in mast cell function and disease progression is the first step in the design of new therapeutic strategies. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of proteins demonstrated to mediate the transport and fusion of secretory vesicles to the membrane in mast cells, leading to the subsequent release of the vesicle cargo through an exocytotic mechanism. The functional role[s] of specific SNARE family member complexes in mast cell degranulation has not been fully elucidated. Here, we review recent and historical data on the expression, formation and localization of various SNARE proteins and their complexes in murine and human mast cells. We summarize the functional data identifying the key SNARE family members that appear to participate in mast cell degranulation. Furthermore, we discuss the utilization of RNA interference (RNAi) methods to validate SNARE function and the use of siRNA as a therapeutic approach to the treatment of inflammatory disease. These studies provide an overview of the specific SNARE proteins and complexes that serve as novel targets for the development of new therapies to treat allergic and autoimmune disease.  相似文献   

11.
Kim TJ  Kang YJ  Lim Y  Lee HW  Bae K  Lee YS  Yoo JM  Yoo HS  Yun YP 《Experimental cell research》2011,317(14):2041-2051
Ceramide 1-phosphate (C1P) is a novel bioactive sphingolipid formed by ceramide kinase (CERK)-catalyzed phosphorylation of ceramide. It has been implicated in the regulation of such vital pathophysiological functions as phagocytosis and inflammation, but there have been no reports ascribing a biological function to CERK in vascular disorders. Here the potential role of CERK/C1P in neointimal formation was investigated using rat aortic vascular smooth muscle cells (VSMCs) in primary culture and a rat carotid injury model. Exogenous C8-C1P stimulated cell proliferation, DNA synthesis, and cell cycle progression of rat aortic VSMCs in primary culture. In addition, wild-type CERK-transfected rat aortic VSMCs induced a marked increase in rat aortic VSMC proliferation and [3H]-thymidine incorporation when compared to empty vector transfectant. C8-C1P markedly activated extracellular signal-regulated kinase 1 and 2 (ERK1/2) within 5 min, and the activation could be prevented by U0126, a MEK inhibitor. Also, K1, a CERK inhibitor, decreased the ERK1/2 phosphorylation and cell proliferation on platelet-derived growth factor (PDGF)-stimulated rat aortic VSMCs. CERK expression and C1P levels were found to be potently increased during neointimal formation using a rat carotid injury model. However, ceramide levels decreased during the neointimal formation process. These findings suggest that C1P can induce neointimal formation via cell proliferation through the regulation of the ERK1/2 protein in rat aortic VSMCs and that CERK/C1P may regulate VSMC proliferation as an important pathogenic marker in the development of cardiovascular disorders.  相似文献   

12.
It has been recognized that protease-activated receptors (PARs), interleukin (IL)-4 and IL-6 are involved in the pathogenesis of allergic diseases, and that IL-12 plays a role in adaptive immune response. However, little is known of the effect of IL-12 on protease-induced cytokine release from mast cells. In the present study, we examined potential influence of IL-12 on mast cell PAR expression and IL-4 and IL-6 release. The results showed that IL-12 downregulated the expression of PAR-2 and upregulated expression of PAR-4 on P815 cells. It also downregulated expression of PAR-2 mRNA, and upregulated expression of PAR-1, PAR-3 and PAR-4 mRNAs. However, IL-12 enhanced trypsin- and tryptase-induced PAR-2 and PAR-2 mRNA expression. It was observed that IL-12 induced release of IL-4, but reduced trypsin- and tryptase-stimulated IL-4 secretion from P815 cells. PD98059, U0126 and LY294002 not only abolished IL-12-induced IL-4 release but also inhibited IL-12-induced phosphorylation of extracellular signal-regulated kinase and Akt. In conclusion, IL-12 may serve as a regulator in keeping the balance of Th1 and Th2 cytokine production in allergic inflammation.  相似文献   

13.
Allergic diseases such as atopic dermatitis, rhinitis, asthma, and anaphylaxis are attractive research areas. Tyrosol (2-(4-hydroxyphenyl)ethanol) is a polyphenolic compound with diverse biological activities. In this study, we investigated whether tyrosol has anti-allergic inflammatory effects. Ovalbumin-induced active systemic anaphylaxis and immunoglobulin E-mediated passive cutaneous anaphylaxis models were used for the immediate-type allergic responses. Oral administration of tyrosol reduced the allergic symptoms of hypothermia and pigmentation in both animal models. Mast cells that secrete allergic mediators are key regulators on allergic inflammation. Tyrosol dose-dependently decreased mast cell degranulation and expression of inflammatory cytokines. Intracellular calcium levels and activation of inhibitor of κB kinase (IKK) regulate cytokine expression and degranulation. Tyrosol blocked calcium influx and phosphorylation of the IKK complex. To define the molecular target for tyrosol, various signaling proteins involved in mast cell activation such as Lyn, Syk, phosphoinositide 3-kinase (PI3K), and Akt were examined. Our results showed that PI3K could be a molecular target for tyrosol in mast cells. Taken together, these findings indicated that tyrosol has anti-allergic inflammatory effects by inhibiting the degranulation of mast cells and expression of inflammatory cytokines; these effects are mediated via PI3K. Therefore, we expect tyrosol become a potential therapeutic candidate for allergic inflammatory disorders.  相似文献   

14.
Suzuki K  Verma IM 《Cell》2008,134(3):485-495
Mast cells are known to play a pivotal role in allergic diseases. Cross-linking of the high-affinity receptor for IgE (FcepsilonRI) leads to degranulation and allergic inflammation; however, the regulatory mechanisms of IgE-dependent exocytosis remain unknown. We show here that IkappaB kinase (IKK) 2 in mast cells plays critical roles in IgE-mediated anaphylaxis in vivo, and IgE-mediated degranulation in vitro, in an NF-kB-independent manner. Upon FcvarepsilonRI stimulation, IKK2 phosphorylates SNAP-23, the target membrane soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptor (SNARE), and ectopic expression of a phospho-mimetic mutant of SNAP-23 partially rescued the impaired IgE-mediated degranulation in IKK2-deficient mast cells. These results suggest that IKK2 phosphorylation of SNAP-23 leads to degranulation and anaphylactic reactions. While this reaction is NF-kB-independent, we additionally show that IKK2 also regulates late-phase allergic reactions promoted by the release of proinflammatory cytokines in an NF-kB-dependent manner. The findings suggest that IKK2 is a central player in allergic reactions.  相似文献   

15.
The Tec family tyrosine kinase, IL-2-inducible T cell kinase (Itk), is expressed in T cells and mast cells. Mice lacking Itk exhibit impaired Th2 cytokine secretion; however, they have increased circulating serum IgE, but exhibit few immunological symptoms of allergic airway responses. We have examined the role of Itk in mast cell function and FcepsilonRI signaling. We report in this study that Itk null mice have reduced allergen/IgE-induced histamine release, as well as early airway hyperresponsiveness in vivo. This is due to the increased levels of IgE in the serum of these mice, because the transfer of Itk null bone marrow-derived cultured mast cells into mast cell-deficient W/W(v) animals is able to fully rescue histamine release in the W/W(v) mice. Further analysis of Itk null bone marrow-derived cultured mast cells in vitro revealed that whereas they have normal degranulation responses, they secrete elevated levels of cytokines, including IL-13 and TNF-alpha, particularly in response to unliganded IgE. Analysis of biochemical events downstream of the FcepsilonRI revealed little difference in overall tyrosine phosphorylation of specific substrates or calcium responses; however, these cells express elevated levels of NFAT, which was largely nuclear. Our results suggest that the reduced mast cell response in vivo in Itk null mice is due to elevated levels of IgE in these mice. Our results also suggest that Itk differentially modulates mast cell degranulation and cytokine production in part by regulating expression and activation of NFAT proteins in these cells.  相似文献   

16.
Mucosal mast cells (MMCs) have an important role in allergic inflammation, and effective antagonists are required for their regulation. To discover a possible mechanism of controlling the activation of MMCs, we investigated the expression and function of syntaxin4, one of the soluble membrane N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, in RBL-2H3 cells, which is a rat mucosal mast cell line. Syntaxin4 silencing was induced by transfection of short interfering RNAs (siRNAs). Syntaxin4 was knocked down in mast cells at both the mRNA and protein levels. The release of granule contents that are involved in inflammation, such as histamine and hexosaminidase, was significantly suppressed by the gene silencing of syntaxin4. Silencing of this gene was also induced in the trachea and bronchi of rats by intratracheal application of the siRNAs using an atelocollagen delivery system. The activation of MMCs, which was monitored by the level of rat mast cell protease-II (RMCPII) in the bronchoalveolar lavage fluid (BALF), was inhibited, and asthmatic airway constriction was prevented by administration of the syntaxin/atelocollagen complex. These results indicate that siRNAs targeting syntaxin4 can stabilize mucosal mast cells and may have beneficial therapeutic effects on the asthmatic response.  相似文献   

17.
Y.H. Choi  G.H. Yan 《Phytomedicine》2009,16(12):1089-1094
Scoparone is known to have a wide range of pharmacological properties in vitro. However, the roles of scoparone in immediate-type allergic reactions have not yet been investigated. In this study, we demonstrated that scoparone attenuated IgE-mediated allergic response in mast cells. Oral administration of scoparone inhibited passive cutaneous anaphylaxis in rats. Presence of scoparone dose-dependently decreased histamine release from rat peritoneal mast cells (RPMC) stimulated by anti-dinitrophenyl IgE. Moreover, scoparone reduced the expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α and interleukin-6 in RPMC. Pretreatment with scoparone inhibited the calcium uptake and p38 mitogen-activated protein kinase (MAPK) activity. Furthermore, scoparone blocked translocation of nuclear factor-kappa B (NF-κB) p65 subunit by suppressing IκBα phosphorylation in RPMC. Reduced calcium uptake as well as the suppressed activity of p38 MAPK and NF-κB might be involved in the inhibitory effect of scoparone on the secretory response. Our findings suggest that scoparone may serve as an effective therapeutic agent for allergic diseases.  相似文献   

18.
Ceramide-1-phosphate (C1P), produced by ceramide kinase (CERK), is implicated in the regulation of many biological functions including cell growth and inflammation. C1P is a direct activator of group IVA cytosolic phospholipsase A2 (PLA2G4A or cPLA2α). Although activation of the CERK–C1P pathway causes mitogenic and cytoprotective responses in many cells, the pathway shows cytotoxicity in several cells and the precise mechanism has not been elucidated. In the present study, we examined the effect of human CERK (hCERK) expression on cytotoxicity in two cell lines. Expression of hCERK in CHO cells caused cell rounding and lactate dehydrogenase (LDH) leakage, and co-addition of ceramide enhanced these responses. Expression of hCERK enhanced C1P formation and release of arachidonic acid in Ca2+ ionophore-stimulated cells. Treatment with 20 μM C2-C1P for 24 h caused cell rounding, and the response was significantly decreased by an inhibitor of cPLA2α. In L929 cells, expression of hCERK with and without ceramide caused cell rounding and LDH leakage, respectively, and the responses were significantly less in a stable clone of L929 cells lacking cPLA2α. These findings suggest the involvement of cPLA2α in CERK–C1P pathway-induced cytotoxicity.  相似文献   

19.
Ceramide kinase (CERK) is an enzyme that phosphorylates ceramide to produce ceramide 1-phosphate. Recently, evidence has emerged that CERK has a role in inflammatory signaling of immune cells. Since obesity is accompanied by chronic, low-grade inflammation, we examined whether CERK might be involved using CERK-null mice. We determined that CERK deficiency suppresses diet-induced increases in body weight, and improves glucose intolerance. Furthermore, we demonstrated that CERK deficiency attenuates MCP-1/CCR2 signaling in macrophages infiltrating the adipose tissue, resulting in the suppression of inflammation in adipocytes, which might otherwise lead to obesity and diabetes.  相似文献   

20.
Antigen/IgE-mediated mast cell activation via FcvarepsilonRI can be markedly enhanced by the activation of other receptors expressed on mast cells and these receptors may thus contribute to the allergic response in vivo. One such receptor family is the G protein-coupled receptors (GPCRs). Although the signaling cascade linking FcvarepsilonRI aggregation to mast cell activation has been extensively investigated, the mechanisms by which GPCRs amplify this response are relatively unknown. To investigate this, we utilized prostaglandin (PG)E2 based on initial studies demonstrating its greater ability to augment antigen-mediated degranulation in mouse mast cells than other GPCR agonists examined. This enhancement, and the ability of PGE2 to amplify antigen-induced calcium mobilization, was independent of phosphoinositide 3-kinase but was linked to a pertussis toxin-sensitive synergistic translocation to the membrane of phospholipase (PL)Cgamma and PLCbeta and to an enhancement of PLCgamma phosphorylation. This "trans-synergistic" activation of PLCbeta and gamma, in turn, enhanced production of inositol 1,4,5-trisphosphate, store-operated calcium entry, and activation of protein kinase C (PKC) (alpha and beta). These responses were critical for the promotion of degranulation. This is the first report of synergistic activation between PLCgamma and PLCbeta that permits reinforcement of signals for degranulation in mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号