首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 632 毫秒
1.
We isolated several thermotolerant Acetobacter species of which MSU10 strain, identified as Acetobacter pasteurianus, could grow well on agar plates at 41°C, tolerate to 1.5% acetic acid or 4% ethanol at 39°C, similarly seen with A. pasteurianus SKU1108 previously isolated. The MSU10 strain showed higher acetic acid productivity in a medium containing 6% ethanol at 37°C than SKU1108 while SKU1108 strain could accumulate more acetic acid in a medium supplemented with 4–5% ethanol at the same temperature. The fermentation ability at 37°C of these thermotolerant strains was superior to that of mesophilic A. pasteurianus IFO3191 strain having weak growth and very delayed acetic acid production at 37°C even at 4% ethanol. Alcohol dehydrogenases (ADHs) were purified from MSU10, SKU1108, and IFO3191 strains, and their properties were compared related to the thermotolerance. ADH of the thermotolerant strains had a little higher optimal temperature and heat stability than that of mesophilic IFO3191. More critically, ADHs from MSU10 and SKU1108 strains exhibited a higher resistance to ethanol and acetic acid than IFO3191 enzyme at elevated temperature. Furthermore, in this study, the ADH genes were cloned, and the amino acid sequences of ADH subunit I, subunit II, and subunit III were compared. The difference in the amino acid residues could be seen, seemingly related to the thermotolerance, between MSU10 or SKU1108 ADH and IFO 3191 ADH.  相似文献   

2.
Acetobacter tropicalis SKU1100 is a thermotolerant acetic acid bacterium that grows even at 42 °C, a much higher temperature than the limit for the growth of mesophilic strains. To elucidate the mechanism underlying the thermotolerance of this strain, we attempted to identify the genes essential for growth at high temperature by transposon (Tn10) mutagenesis followed by gene or genome analysis. Among the 4,000 Tn10-inserted mutants obtained, 32 exhibited a growth phenotype comparable to that of the parent strain at 30 °C but not at higher temperatures. We identified the insertion site of Tn10 on the chromosomes of all the mutant strains by TAIL (Thermal Asymmetric Interlaced)-PCR, and found 24 genes responsible for thermotolerance. The results also revealed a partial overlap between the genes required for thermotolerance and those required for acetic acid resistance. In addition, the origin and role of these thermotolerant genes are discussed.  相似文献   

3.
Thermotolerant acetic acid bacteria belonging to the genus Gluconobacter were isolated from various kinds of fruits and flowers from Thailand and Japan. The screening strategy was built up to exclude Acetobacter strains by adding gluconic acid to a culture medium in the presence of 1% D-sorbitol or 1% D-mannitol. Eight strains of thermotolerant Gluconobacter were isolated and screened for D-fructose and L-sorbose production. They grew at wide range of temperatures from 10°C to 37°C and had average optimum growth temperature between 30-33°C. All strains were able to produce L-sorbose and D-fructose at higher temperatures such as 37°C. The 16S rRNA sequences analysis showed that the isolated strains were almost identical to G. frateurii with scores of 99.36-99.79%. Among these eight strains, especially strains CHM16 and CHM54 had high oxidase activity for D-mannitol and D-sorbitol, converting it to D-fructose and L-sorbose at 37°C, respectively. Sugar alcohols oxidation proceeded without a lag time, but Gluconobacter frateurii IFO 3264T was unable to do such fermentation at 37°C. Fermentation efficiency and fermentation rate of the strains CHM16 and CHM54 were quite high and they rapidly oxidized D-mannitol and D-sorbitol to D-fructose and L-sorbose at almost 100% within 24 h at 30°C. Even oxidative fermentation of D-fructose done at 37°C, the strain CHM16 still accumulated D-fructose at 80% within 24 h. The efficiency of L-sorbose fermentation by the strain CHM54 at 37°C was superior to that observed at 30°C. Thus, the eight strains were finally classified as thermotolerant members of G. frateurii.  相似文献   

4.
Industrial vinegar production by submerged acetic acid fermentation has been carried out using Acetobacter strains at about 30°C. To obtain strains suitable for acetic acid fermentation at higher temperature, about 1,100 strains of acetic acid bacteria were isolated from vinegar mash, soils in vinegar factories and fruits, and their activities to oxidize ethanol at high temperature were examined. One of these strains, No. 1023, identified as Acetobacter aceti, retained full activity to produce acetic acid in continuous submerged culture at 35°C and produced 45% of activity at 38°C, while the usual strain of A. aceti completely lost its activity at 35°C. Thus the use of this strain may reduce the cooling costs of industrial vinegar production.  相似文献   

5.
Acetobacter pasteurianus strains IFO3283, SKU1108, and MSU10 were grown under acetic acid fermentation conditions, and their growth behavior was examined together with their capacity for acetic acid resistance and pellicle formation. In the fermentation process, the cells became aggregated and covered by amorphous materials in the late-log and stationary phases, but dispersed again in the second growth phase (due to overoxidation). The morphological change in the cells was accompanied by changes in sugar contents, which might be related to pellicle polysaccharide formation. To determine the relationship between pellicle formation and acetic acid resistance, a pellicle-forming R strain and a non-forming S strain were isolated, and their fermentation ability and acetic acid diffusion activity were compared. The results suggest that pellicle formation is directly related to acetic acid resistance ability, and thus is important to acetic acid fermentation in these A. pasteurianus strains.  相似文献   

6.

The use of thermotolerant yeast strains is an important attribute for a cost-effective high temperature biofermentation processes. However, the availability of thermotolerant yeast strains remains a major challenge. Isolation of temperature resistant strains from extreme environments or the improvements of current strains are two major strategies known to date. We hypothesised that bacteria are potential “hurdles” in the life cycle of yeasts, which could influence the evolution of extreme phenotypes, such as thermotolerance. We subjected a wild-type yeast, Lachancea thermotolerans to six species of bacteria sequentially for several generations. After coevolution, we observed that three replicate lines of yeasts grown in the presence of bacteria grew up to 37 °C whereas the controls run in parallel without bacteria could only grow poorly at 35 °C retaining the ancestral mesophilic trait. In addition to improvement of thermotolerance, our results show that the fermentative ability was also elevated, making the strains more ideal for the alcoholic fermentation process because the overall productivity and ethanol titers per unit volume of substrate consumed during the fermentation process was increased. Our unique method is attractive for the development of thermotolerant strains or to augment the available strain development approaches for high temperature industrial biofermentation.

  相似文献   

7.
Thermotolerant acetic acid bacteria (AAB), Acetobacter tropicalis SKU1100, can grow above 40 °C. To investigate the basis of its thermotolerance, we compared the genome of A. tropicalis SKU1100 with that of mesophilic AAB strain Acetobacter pasteurianus IFO3283-01. The comparative genomic study showed that amino acid substitutions from large to small residue and Lys to Arg occur in many orthologous genes. Furthermore, comparative modeling study was carried out with the orthologous proteins between SKU1100 and IFO3283-01 strains, indicating that the number of Arg-based salt bridges increased in protein models. Since it has been reported that Arg-based salt bridges are important factor for thermo-stability of protein structure, our results strongly suggest that the increased number of Arg-based salt bridges may contributes to the thermotolerance of A. tropicalis SKU1100 (the thermo-stability of proteins in A. tropicalis SKU1100).  相似文献   

8.
Specific growth rates (μ) of two strains of Saccharomyces cerevisiae decreased exponentially (R 2>0.9) as the concentrations of acetic acid or lactic acid were increased in minimal media at 30°C. Moreover, the length of the lag phase of each growth curve (h) increased exponentially as increasing concentrations of acetic or lactic acid were added to the media. The minimum inhibitory concentration (MIC) of acetic acid for yeast growth was 0.6% w/v (100 mM) and that of lactic acid was 2.5% w/v (278 mM) for both strains of yeast. However, acetic acid at concentrations as low as 0.05–0.1% w/v and lactic acid at concentrations of 0.2–0.8% w/v begin to stress the yeasts as seen by reduced growth rates and decreased rates of glucose consumption and ethanol production as the concentration of acetic or lactic acid in the media was raised. In the presence of increasing acetic acid, all the glucose in the medium was eventually consumed even though the rates of consumption differed. However, this was not observed in the presence of increasing lactic acid where glucose consumption was extremely protracted even at a concentration of 0.6% w/v (66 mM). A response surface central composite design was used to evaluate the interaction between acetic and lactic acids on the specific growth rate of both yeast strains at 30C. The data were analysed using the General Linear Models (GLM) procedure. From the analysis, the interaction between acetic acid and lactic acid was statistically significant (P≤0.001), i.e., the inhibitory effect of the two acids present together in a medium is highly synergistic. Journal of Industrial Microbiology & Biotechnology (2001) 26, 171–177. Received 06 June 2000/ Accepted in revised form 21 September 2000  相似文献   

9.
A thermotolerant Saccharomyces cerevisiae yeast strain, YK60‐1, was bred from a parental strain, MT8‐1, via stepwise adaptation. YK60‐1 grew at 40°C, a temperature at which MT8‐1 could not grow at all. YK60‐1 exhibited faster growth than MT8‐1 at 30°C. To investigate the mechanisms how MT8‐1 acquired thermotolerance, DNA microarray analysis was performed. The analysis revealed the induction of stress‐responsive genes such as those encoding heat shock proteins and trehalose biosynthetic enzymes in YK60‐1. Furthermore, nontargeting metabolome analysis showed that YK60‐1 accumulated more trehalose, a metabolite that contributes to stress tolerance in yeast, than MT8‐1. In conclusion, S. cerevisiae MT8‐1 acquired thermotolerance by induction of specific stress‐responsive genes and enhanced intracellular trehalose levels. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1116–1123, 2013  相似文献   

10.
The bacterium Acetobacter pasteurianus can ferment acetic acid, a process that proceeds at the risk of oxidative stress. To understand the stress response, we investigated catalase and OxyR in A. pasteurianus NBRC3283. This strain expresses only a KatE homolog as catalase, which is monofunctional and growth dependent. Disruption of the oxyR gene increased KatE activity, but both the katE and oxyR mutant strains showed greater sensitivity to hydrogen peroxide as compared to the parental strain. These mutant strains showed growth similar to the parental strain in the ethanol oxidizing phase, but their growth was delayed when cultured in the presence of acetic acid and of glycerol and during the acetic acid peroxidation phase. The results suggest that A. pasteurianus cells show different oxidative stress responses between the metabolism via the membrane oxidizing pathway and that via the general aerobic pathway during acetic acid fermentation.  相似文献   

11.
The hydroid Ectopleura larynx is a common fouling organism on aquaculture nets. To contribute to the development of novel cleaning methods, laboratory and field studies determined the effects of heat (30, 40, 50 and 60°C for immersion times of 1 and 3 s) and acetic acid (0.2 and 2.0% for immersion times of 1, 3 and 10 s, 1 and 5 min) on the settlement of actinulae and the survival of juvenile and adult E. larynx. Laboratory studies showed that, regardless of immersion time, a temperature of 50°C was effective in preventing the settlement of actinulae and the survival of juveniles, while ≤12% of adult hydroids could survive. A temperature of 60°C killed all adult hydroids. For an acetic acid concentration of 0.2%, an immersion time of 1 min substantially reduced the settlement of actinulae and the survival of juvenile and adult hydroids, and none of the juvenile and adult hydroids survived after 5 min. For an acetic acid concentration of 2.0%, all immersion times were effective and reduced the mean settlement of actinulae and the survival of juvenile and adult hydroids to ≤10%. Field studies with fouled net panels exposed to selected heat or acetic acid treatments showed small reductions in mean wet weight and net aperture occlusion of the net panels 2 and 5 days after treatment. Visual inspections of the net panels showed that hydranths of the hydroids were shed, but the dead stolons of the hydroids remained on the treated net panels. Novel cleaning methods and devices may utilise these results to effectively kill E. larynx on aquaculture nets, while further studies are needed to determine the necessity of removing the dead hydroids before further biofouling accumulates on thenets.  相似文献   

12.
The modification of lipid composition allows cells to adjust membrane biophysical properties in response to changes in environmental temperature. Here, we use adaptive laboratory evolution (ALE) in the presence of myriocin, a sphingolipid (SLs) biosynthesis inhibitor, to remodel the lipid profile of an industrial yeast strain (LH) of Saccharomyces cerevisiae. The approach enabled to obtain a heterogeneous population (LHev) of myriocin-tolerant evolved clones characterized by its growth capacity at high temperature. Myriocin exposure also caused tolerance to soraphen A, an inhibitor of the acetyl-CoA carboxylase Acc1, the rate-limiting enzyme in fatty acid de novo production, supporting a change in lipid metabolism during ALE. In line with this, characterization of two randomly selected clones, LH03 and LH09, showed the presence of lipids with increased saturation degree and reduced acyl length. In addition, the clone LH03, which displays the greater improvement in fitness at 40°C, exhibited higher SL content as compared with the parental strain. Analysis of the LH03 and LH09 genomes revealed a loss of chromosomes affecting genes that have a role in fatty acid synthesis and elongation. The link between ploidy level and growth at high temperature was further supported by the analysis of a fully isogenic set of yeast strains with ploidy between 1N and 4N which showed that the loss of genome content provides heat tolerance. Consistent with this, a thermotolerant evolved population (LH40°) generated from the parental LH strain by heat-driven ALE exhibited a reduction in the chromosome copy number. Thus, our results identify myriocin-driven evolution as a powerful approach to investigate the mechanisms of acquired thermotolerance and to generate improved strains.  相似文献   

13.
基于分生孢子热胁迫反应的球孢白僵菌耐热菌株筛选   总被引:3,自引:0,他引:3  
俞佳  冯明光 《菌物学报》2006,25(2):278-283
将寄主和原产地不同的16株球孢白僵菌Beauveriabassiana的分生孢子分别悬浮于1mL萌发液中,接受48℃恒温水浴45min的热胁迫后,再在25℃下振荡培养24h,以残存活孢率作为各菌株对热胁迫反应的耐热力指标。结果显示,供试菌株的残存活孢率在4.6%~87.1%之间变化,相互间差异极显著。热胁迫后有三株菌的残活孢率均在40%以上,耐热力强;四株菌的残存活孢率低于10%,耐热力弱;其余菌株的残存活孢率为11.0%~23.6%,耐热力居中。从上述菌株中挑选耐热力强、居中和弱的菌株各一株(残存活孢率分别为40.8%、15.8%和4.6%),分别置于25℃、30℃及35℃下平板培养,其菌落生长表现明显与耐热力的强弱相关。虽然三菌株在25℃下的菌落生长无显著差异,但只有耐热力强的菌株能在35℃下正常生长并产孢,是罕见的球孢白僵菌耐热菌株。  相似文献   

14.
Molecular genetic screening of Saccharomyces yeasts, isolated from natural sources in the regions of the world with a hot climate (Africa, South America, Southeast and Central Asia) was used for the search of thermotolerant S. cerevisiae strains. Based on physiological tests, four strains were selected that could grow at high temperatures (42 and 43°C) and had good fermentation activity: 7962-4B, 3529-7B, 52922-4-1-1A- 1C, and 87-2421.1-2A. Hybrids of monosporic culture of distiller’s race XII (XII7-2) with the thermotolerant strains were obtained. Unlike the strain XII7-2, which is unable to grow at above 39°C, all hybrids showed good growth at 42°C. Two of the six hybrids analyzed, H2-1 (87-2421.1-2A × XII7-2) and H3-2 (7962-4B × XII7-2), showed higher fermentation activity than the parental strains. According to the results obtained, inter-strain hybridization is an efficient method of obtaining S. cerevisiae strains, which combine thermotolerance with high efficiency of alcoholic fermentation.  相似文献   

15.
16.
Lactic acid bacteria (LAB) exert antagonistic activities against diverse microorganisms, including pathogens. In this work, we aimed to investigate the ability of LAB strains isolated from food to produce biofilms and to inhibit growth and surface colonization of Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 at 10°C. The ability of 100 isolated LAB to inhibit EHEC O157:H7 NCTC12900 growth was evaluated in agar diffusion assays. Thirty-seven LAB strains showed strong growth inhibitory effect on EHEC. The highest inhibitory activities corresponded to LAB strains belonging to Lactiplantibacillus plantarum, Pediococcus acidilactici and Pediococcus pentosaceus species. Eighteen out of the 37 strains that showed growth inhibitory effects on EHEC also had the ability to form biofilms on polystyrene surfaces at 10°C and 30°C. Pre-established biofilms on polystyrene of four of these LAB strains were able to reduce significantly surface colonization by EHEC at low temperature (10°C). Among these four strains, Lact. plantarum CRL 1075 not only inhibited EHEC but also was able to grow in the presence of the enteric pathogen. Therefore, this strain proved to be a good candidate for further technological studies oriented to its application in food-processing environments to mitigate undesirable surface contaminations of E. coli.  相似文献   

17.
Aims: The study aimed to compare survival of Cronobacter sakazakii strains in plant‐derived infant milk formula (IMF) ingredients and their thermotolerance in reconstituted IMF. Methods and Results: Inulin and lecithin were inoculated with isolates of C. sakazakii including the typed clinical strains, NCTC 11467T and BAA 894; a mutant strain in which the wcaD gene had been disrupted; and two environmental strains isolated from IMF processing facilities. Samples were stored and examined for C. sakazakii. All strains were still detectable in both matrices after 338 days storage, except for the mutant strain that was no longer detectable at that time. Higher numbers of the environmental strains were recoverable after 338 days than the clinical strains. The thermotolerance of the five strains was investigated in reconstituted IMF at 55, 60 and 65°C. The clinically derived type strain, NCTC 11467T, and the mutant strain were shown to be significantly more thermotolerant than other strains tested. Conclusions: Environmental strains were more persistent than the clinical strains in inulin and lecithin, indicating that patho‐adaptation may have contributed to a reduction in the desiccation tolerance phenotype. However, the thermotolerance results could indicate that the ability to produce extracellular polysaccharide decreases thermotolerance. Significance and Impact of the Study: These results indicate that desiccation resistance may play a role in survival of C. sakazakii in dry IMF ingredients and processing plants; however, this trait may be of less importance in clinical environs.  相似文献   

18.
A spontaneously occurring, nalidixic acid-resistant (NalR), thermotolerant (T/r) mutant ofEscherichia coli was isolated. Bacteriophage P1-mediated transduction showed that NalR mapped at or neargyr A, one of the two genes encoding DNA gyrase. Expression ofgyrA + from a plasmid rendered the mutant sensitive to nalidixic acid and to high temperature, the result expected for alleles mapping ingyrA. Plasmid linking number measurements, made with DNA from cells grown at 37° C or shifted to 48° C, revealed that supercoiling was about 12% less negative in the T/r mutant than in the parental strain. Each strain preferentially expressed two different proteins at 48° C. The genetic and supercoiling data indicate that thermo-tolerance can arise from an alteration in DNA gyrase that lowers supercoiling. This eubacterial study, when. coupled with those of archaebacteria, suggests that DNA relaxation is a general aspect of thermotolerance.  相似文献   

19.
CRISPR/Cas-based (clustered regularly interspaced short palindromic repeats/CRISPR-associated) screening has been proved to be an efficient method to study functional genomics from yeast to human. In this study, we report the development of a focused CRISPR/Cas-based gene activation library in Saccharomyces cerevisiae and its application in gene identification based on functional screening towards improved thermotolerance. The gene activation library was subjected to screening at 42°C, and the same library cultured at 30°C was set as a control group. After five successive subcultures, five clones were randomly picked from the libraries cultured at 30 and 42°C, respectively. The five clones selected at 30°C contain the specificity sequences of five different single guide RNAs, whereas all the five clones selected at 42°C contain the specificity sequence of one sgRNA that targets the promoter region of OLE1. A crucial role of OLE1 in thermotolerance was identified: the overexpression of OLE1 increased fatty acid unsaturation, and thereby helped counter lipid peroxidation caused by heat stress, rendering the yeast thermotolerant. This study described the application of CRISPR/Cas-based gene activation screening with an example of thermotolerant yeast screening, demonstrating that this method can be used to identify functional genes in yeast.  相似文献   

20.
A novel, moderately barophilic bacterium was isolated from a sediment sample obtained from the Ryukyu Trench, at a depth of 5110 m. The isolate, designated strain DSJ4, is a Gram-negative rod capable of growth between 4°C and 18°C under atmospheric pressure, with optimum growth displayed at 10°C, and capable of growth at pressures between 0.1 MPa and 70 MPa at 10°C, with optimum growth displayed at 10 MPa. Strain DSJ4 is a moderately barophilic bacterium, and shows no significant change in growth at pressures up to 50 MPa. Phylogenetic analysis of the 16S rRNA sequence of strain DSJ4 places this strain within the Photobacterium subgroup of the family Vibrionaceae, closely related to the strain SS9 that was independently isolated from the Sulu Trough. The temperature and pressure ranges for growth, cellular fatty acid composition, and assorted physiological and biochemical characteristics indicate that these strains differ from other Photobacterium species. Furthermore, both SS9 and DSJ4 displayed a low level of DNA similarity to other Photobacterium type strains. Based on these differences, these strains are proposed to represent a new deep-sea-type species. The name Photobacterium profundum (JCM10084) is proposed. Received June 13, 1997 / Accepted: August 9, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号