首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the generation of reactive oxygen species (ROS) and the induction of lipid peroxidation by carcinogenic iron(III)-NTA complex (1:1), which has three conformations with two pKa values (pKa1≈4, pKa2≈8). These conformations are type (a) in acidic conditions of pH 1-6, type (n) in neutral conditions of pH 3-9, and type (b) in basic conditions of pH 7-10. The iron(III)-NTA complex was reduced to iron(II) complex under cool-white fluorescent light without the presence of any reducer. The reduction rates of three species of iron(III)-NTA were in the order type (a)?type (n) ? type (b). Iron(III)-NTA-dependent lipid peroxidation was induced in the presence and absence of preformed lipid peroxides (L-OOH) through processes associated with and without photoreduction of iron(III). The order of the abilities of the three species of iron(III)-NTA to initiate the three mechanisms of lipid peroxidation was: (1) type (a) ? type (n) ? type (b) in lipid peroxidation that is induced L-OOH- and H2O2-dependently and mediated by the photoreduction of iron(III); (2) type (b) ? type (n) ? type (a) in lipid peroxidation that is induced L-OOH- and H2O2-dependently but not mediated by the photoreduction of iron(III); (3) type (n) ? type (b) ? type (a) in lipid peroxidation that is induced peroxide-independently and mediated by the photoactivation but not by the photoreduction of iron(III). The rate of lipid peroxidation induced L-OOH-dependently is faster than that induced H2O2-dependently in the mechanism (1), but the rate of lipid peroxidation induced H2O2-dependently is faster than that induced L-OOH-dependently in the mechanism (2). In the lag process of mechanism (3), L-OOH and/or some free radical species, not 1O2, were generated by photoactivation of iron(III)-NTA. These multiple pro-oxidant properties that depend on the species of iron(III)-NTA were postulated to be a principal cause of its carcinogenicity.  相似文献   

2.
The cellular localization of lipid hydroperoxides was determined for the first time in mitochondria, microsomes and cytosol of rat liver using a specific method involving chemical derivatization and HPLC. Mitochondria contained the highest level of hydroperoxides. After 6h of intragastric administration of carbon tetrachloride (CCl4) to rats (2 ml/kg body weight), the concentration of lipid hydroperoxides increased significantly in liver mitochondria and cytochrome oxidase activity was inhibited to 35% of the control rats. The mitochondrial content of haem a decreased to 60% of the control at 12 h of CCl4 administration. In vitro reaction of mitochondria with CCl4 caused inactivation of cytochrome oxidase. These observations suggested that cytochrome oxidase and haem a in mitochondria were targets of CCl4.  相似文献   

3.
The level of lipid hydroperoxides was determined by a newly developed method in rat tissues of vitamin E deficiency, which was a good in viuo model of enhanced radical reactions. In the heart, lung and kidney, the level of lipid hydroperoxides increased significantly as early as 4 weeks after feeding on a tocopherol-deficient diet compared with that of the control group. After 8 weeks of the deficiency, similar results were obtained. These results indicate that the lipid hydroperoxide is available as an extremely sensitive indicator of lipid peroxidation in these organs, because it takes several months to detect manifestations of the vitamin deficiency based on conventional indices.  相似文献   

4.
Abstract: The relationship between iron-dependent fetal mouse spinal cord neuron injury and the generation of endogenous lipid hydroperoxides (LOOHs) has been investigated. Cultured spinal cord neurons were incubated with ferrous iron (3–200 µM). Cell viability was measured in terms of the uptake of α-[methyl-3H]aminoisobutyric acid ([3H]AIB). Both endogenously and iron-generated LOOH, i.e., free fatty acid hydroperoxide (FFAOOH), phosphatidylethanolamine hydroperoxide (PEOOH), and phosphatidylcholine hydroperoxide (PCOOH), were measured directly by an HPLC-chemiluminescence (HPLC-CL) assay. The FFAOOH, PEOOH, and PCOOH levels in neurons incubated with 200 µM Fe2+ for 40 min were, respectively, 22-, 158-, and sevenfold higher than those in non-iron-exposed cultures, demonstrating that phosphatidylethanolamine (PE) was most sensitive to peroxidation. The dose-response and time course of Fe2+-induced generation of these LOOHs were also established. In both experiments, the LOOH levels were correlated directly with loss of neuronal viability, suggesting strongly a direct relationship between lipid peroxidation and cell injury. On examination of the time course of the LOOH generation, an immediate increase in PEOOH and PCOOH levels with only 30 s of Fe2+ incubation was observed. In contrast, a lag phase in the increase in FFAOOH level (2 min after Fe2+ addition) suggested a delay in the activation of phospholipase A2 (PLA2) required for the hydrolysis and generation of FFAOOH. This culture system provides an excellent model for screening antioxidant neuroprotective compounds with regard to their ability to protect against iron-dependent peroxidative injury and the relationship of the neuroprotection to inhibition of lipid peroxidation and/or PLA2.  相似文献   

5.
Lipid hydroperoxides in oils and foods were measured by a flow injection analysis system with high sensitivity and selectivity. After sample injection, lipid hydroperoxides were reacted with diphenyl-1-pyrenylphosphine (DPPP) in a stainless steel coil, then the fluorescence intensity of DPPP oxide, that was produced by the reaction, was monitored. By this method, trilinolein hydroperoxide showed good linearity between 0.4 and 79pmol and their detection limits were 0.2pmol (signal-to-noise ratio = 3). The method made it possible to inject samples at 2-min intervals. There was a good agreement of the amounts of lipid hydroperoxides in oils and foods between by the batch method with DPPP and by the proposed method (coefficient of correlation: r = 0.999; n = 21; peroxide value = 0.09–167 meq/g). With this method, the calibration graph of trilinolein hydroperoxide was useful for all samples tested.  相似文献   

6.
We investigated the antioxidative property of T-0970, a newly synthesized ureidophenol derivative. The inhibitory effect of T-0970 on spontaneous lipid peroxidation in rat brain was 10 times greater than those of well-known antioxidants such as butylhydroxytoluene (BHT), probucol and α-tocopherol. T-0970 also showed dose-dependent free radical scavenging activities in vitro for both superoxide anions and hydroxyl radicals. The radical-scavenging potencies of T-0970 were about 10–30 times stronger than those of BHT. We evaluated the in vivo antioxidative ability of T-0970 in the animal model of acute oxidative tissue injury in rats. Intraperitoneal injection of ferric nitrilotriacetate (Fe/NTA) caused an acute and remarkable increase in the level of thiobarbituric acid-reactive substances (TBARS) in both plasma and the liver, and also resulted in a considerable elevation of the plasma levels of GOT and GPT indicative of hepatic injury. Both oral and intravenous administration of T-0970 dose-dependently depressed these diagnostic parameters. These results indicate that T-0970 may have a therapeutic potential in various diseases associated with oxidative tissue injury.  相似文献   

7.
《Free radical research》2013,47(3):179-185
The effects of ebselen(2-pheny1-1,2-benzoisoselenazol-3(2H)-one), a synthetic seleno-organic compound with glutathione peroxidase-like activity were investigated on lipid peroxidation in rat liver microsomes. Ebselen inhibited malondialdehyde production coupled to the lipid peroxidation stimulated by either ADP-iron-ascorbate or CC14. The inhibitory activity of ebselen on each system was strongly increased by a 5-min preincubation with liver microsomes; the IC50 values against ADP-Fe-ascorbate-stimulated and CC14-stimulated lipid peroxidation were 1.6/jM and 70 μM respectively. Ebselen also inhibited the endogenous lipid peroxidation with a NADPH-generating system, but it slightly stimulated the endogenous activity of ADP-Fe-ascorbate-stimulated lipid peroxidation (without a NADPH-generating system). Furthermore, ebselen inhibited oxygen uptake coupled to the lipid peroxidation by ADP-Fe-ascorbate and NADPH-ADP-iron; the IC50 values were 2.5μM AND 20.3 μM respectively. Ebselen also prolonged the lag-time of onset of ADP-Fe-ascorbate-stimulated lipid peroxidation significantly, but not that observed with NADPH-ADP-Fe-stimulated lipid peroxidation.  相似文献   

8.
The study was undertaken to evaluate the effect of prior treatment of rats with the antimalarial drugs amodiaquine (AQ) mefloquine (MQ) and halofantrine (HF) on rat liver microsomal lipid peroxidation in the presence of 1 mM FeSO4, 1 mM ascorbate and 0.2 mM H2O2 (oxidants). Ingestion of -tocopheral, a radical chain-breaking antioxidant was also included to assess the role of antioxidants in the drug treatment. In the presence of oxidants AQ, MQ and HF elicited 288%, 175% and 225% increases in malondialdehyde (MDA) formation while the drugs induced 125%, 63% and 31% increases in the absence of oxidants respectively. Similarly, AQ, MQ and HF induced lipid hydroperoxide formation by 380%, 256%, 360% respectively in the presence of oxidants and 172%, 136% and 92% in the absence of exogenously added oxidants respectively. -tocopherol reduced AQ, MQ and HF-induced MDA formation by 40%, 55% and 52% respectively and lipid hydroperoxide formation by 53%, 59% and 54% respectively. Similarly, -tocopherol attenuated the AQ, MQ and HF-induced MDA formation by 49%, 51% and 51% in the presence of oxidants and lipid hydroperoxide formation by 61%, 62% and 47% respectively. The results indicate that rat liver microsomal lipid peroxidation could be enhanced by antimalarial drugs in the presence of reactive oxygen species and this effect could be ameliorated by treatment with antioxidants.  相似文献   

9.
Diets high in fish oil containing polyunsaturated fatty acids of the n-3 family. have been suggested to decrease the risk of cardiovascular disease. However these lipids are highly susceptible to oxidative deterioration. In order to investigate the influence of n-3 fatty acids on oxidative status, the effect of feeding rats with fish oil or cocunut oil diets was studied by measuring different parameters related to an oxidative free radical challenge. Synthetic diets containing 15% (w/v) fish oil or coconut oil were used to feed growing rats for 4 weeks. As compared to control diet, the fish oil containing diet produced a significant decrease of cholesterol and triglyceride concentration in serum. however there was a significant increase in lipid peroxidation products. In addition, in fish oil fed animals, there was also a decrease in vitamin E and A concentration. Furthermore, the rate of lipid peroxidation in isolated microsomes was three fold higher in rats fed fish oil as compared to rats with coconut oil diet. No significant differences between the two experimental groups were observed in superoxide dismutase (SOD) and phospholipid hydroperoxide glutathione peroxidase (PHGPX) activities. However, there was a decrease in glutathione peroxidase (GPX) activity. These results suggest that fish oil feeding at an amount compatible with human diet, although decreasing plasma lipids, actually challenge the antioxidant defence system, thus increasing the susceptibility of tissues to free radical oxidative damage.  相似文献   

10.
《Free radical research》2013,47(1):147-152
Diets high in fish oil containing polyunsaturated fatty acids of the n-3 family. have been suggested to decrease the risk of cardiovascular disease. However these lipids are highly susceptible to oxidative deterioration. In order to investigate the influence of n-3 fatty acids on oxidative status, the effect of feeding rats with fish oil or cocunut oil diets was studied by measuring different parameters related to an oxidative free radical challenge. Synthetic diets containing 15% (w/v) fish oil or coconut oil were used to feed growing rats for 4 weeks. As compared to control diet, the fish oil containing diet produced a significant decrease of cholesterol and triglyceride concentration in serum. however there was a significant increase in lipid peroxidation products. In addition, in fish oil fed animals, there was also a decrease in vitamin E and A concentration. Furthermore, the rate of lipid peroxidation in isolated microsomes was three fold higher in rats fed fish oil as compared to rats with coconut oil diet. No significant differences between the two experimental groups were observed in superoxide dismutase (SOD) and phospholipid hydroperoxide glutathione peroxidase (PHGPX) activities. However, there was a decrease in glutathione peroxidase (GPX) activity. These results suggest that fish oil feeding at an amount compatible with human diet, although decreasing plasma lipids, actually challenge the antioxidant defence system, thus increasing the susceptibility of tissues to free radical oxidative damage.  相似文献   

11.
渗透胁迫下稻苗中铁催化的膜脂过氧化作用   总被引:12,自引:0,他引:12  
在-0.7MPa渗透胁迫下,水稻幼苗体内和H2O2大量产生,Fe2+积累,膜脂过氧化作用加剧。水稻幼苗体内Fe2+含量与膜脂过氧化产物MDA含量呈极显著的正相关。外源Fe2+、Fe3+、H2O2、Fe2++H2O2、DDTC均能刺激膜脂过氧化作用,而铁离子的螯合剂DTPA则有缓解作用。OH的清除剂苯甲酸钠和甘露醇能明显地抑制渗透胁迫下Fe2+催化的膜脂过氧化作用。这都表明渗透胁迫下水稻幼苗体内铁诱导的膜脂过氧化作用主要是由于其催化Fenton型Haber-Weiss反应形成OH所致。  相似文献   

12.
《Free radical research》2013,47(5):293-301
The characteristics of the visible luminescence that follows the lipid peroxidative process were investigated either in the autoxidation of rat brain homogenates or in the azo-bis-arnidinopropane initiated lipid peroxidation of erythrocyte plasma membranes and liver microsomes. In these systems the luminescence decay observed after total inhibition of the lipid peroxidation is not an iron-catalyzed process, and follows a complex kinetics comprising fast and slow components. The slow component of the decay lasts for several hours at 27°C and amounts to nearly half of the total intensity measured prior to the inhibition of the oxidative process by propyl gallate. The addition of thiols (diethyldithiocarbamate, penicillamine or dithiothreitol) to a lipid peroxidizing system inhibits the chain oxidation and catalyzes the dark decomposition of one (or several) of the luminescence precursors, following first order kinetics. The effect of temperature on the slow luminescence decay corresponds to an activation energy of 18.5kcal/mol.  相似文献   

13.
The characteristics of the visible luminescence that follows the lipid peroxidative process were investigated either in the autoxidation of rat brain homogenates or in the azo-bis-arnidinopropane initiated lipid peroxidation of erythrocyte plasma membranes and liver microsomes. In these systems the luminescence decay observed after total inhibition of the lipid peroxidation is not an iron-catalyzed process, and follows a complex kinetics comprising fast and slow components. The slow component of the decay lasts for several hours at 27°C and amounts to nearly half of the total intensity measured prior to the inhibition of the oxidative process by propyl gallate. The addition of thiols (diethyldithiocarbamate, penicillamine or dithiothreitol) to a lipid peroxidizing system inhibits the chain oxidation and catalyzes the dark decomposition of one (or several) of the luminescence precursors, following first order kinetics. The effect of temperature on the slow luminescence decay corresponds to an activation energy of 18.5kcal/mol.  相似文献   

14.
The effect of chronic ethanol exposure, in a liquid diet, on lipid peroxidation and some antioxidant systems of rat brain was investigated. Chronic ethanol administration induced a greater susceptibility to iron/ascorbate-induced lipid peroxidation, estimated as thiobarbituric reactive substances (TBARS) production, in the microsomal fraction, but a lower lipid peroxidation in the total homogenate. Glutathione (GSH) levels as well as GSH peroxidase and GSH reductase were unaffected, while the activity of Cu-Zn superoxide dismutase was decreased and that of catalase increased. Lipid peroxidation experiments performed in the presence of some hydroxyl radical scavengers suggested that a greater OH· generation may be responsible of the greater TBARS production in the microsomal fraction of ethanol treated rats; differently, in total homogenate of control and ethanol rats a relationship was found between the redox state of iron and TBARS production, suggesting that the lower lipid peroxidation in treated rats may depend on a different modulation of the iron redox state.  相似文献   

15.
The primary metabolic fate of methanol is oxidation to formaldehyde and then to formate by enzymes of the liver. Cytochrome P-450 and a role for the hydroxyl radical have been implicated in this process. The aim of the paper was to study the liver antioxidant defense system in methanol intoxication, in doses of 1.5, 3.0 and 6.0 g/kg b.w., after methanol administration to rats. In liver homogenates, the activities of Cu, Zn-superoxide dismutase and catalase were significantly increased after 6 h following methanol ingestion in doses of 3.0 and 6.0 g/kg b.w. and persisted up to 2-5 days, accompanied by significant decrease of glutathione reductase and glutathione peroxidase activities. The content of GSH was significantly decreased during 6 hours to 5 days. The liver ascorbate level was significantly diminished, too, while MDA levels were considerably increased after 1.5, 3.0 and 6.0 g/kg b.w. methanol intoxication. Changes due to methanol ingestion may indicate impaired antioxidant defense mechanisms in the liver tissue.  相似文献   

16.
Ferric ion was found to stimulate the peroxidation of erythrocyte membrane lipids, causing a biphasic and concentration-dependent increase in the formation of thiobarbituric acid reactive substances. Ascorbic acid and reduced glutathione were able to enhance this lipid peroxidation, presumably by facilitating the reduction of ferric ion. Iron chelators, such as phytic acid, ethylenediaminetetraacetic acid and uric acid, and the chain-reaction-terminating antioxidant butylated hydroxytoluene suppressed the ferric ion-induced peroxidation by actions not likely related to hydroxyl radical scavenging. The effectiveness of phytic acid, a naturally occurring antioxidant, in the inhibition of iron-dependent lipid peroxidation suggests its possible therapeutic application as a non-toxic iron chelator for ameliorating the extent of oxy-radical-induced tissue damage.Abbreviations BHT Butylated Hydroxytoluene - EDTA Ethylenediaminetetraacetic Acid - GSH Reduced Glutathione - TBA 2-Thiobarbituric Acid - TBARS 2-Thiobarbituric Acid Reactive Substances  相似文献   

17.
Vitamin A (retinol) and some of its analogs exhibited varying degrees of inhibition on induced iron and ascorbic acid lipid peroxidation of rat brain mitochondria. Malonyldialdehyde production was used as an index of the extent of in vitro lipid peroxidation. The fat-soluble vitamins retinol, retinol acetate, retinoic acid, retinol palmitate, and retinal at concentrations between 0.1 and 10.0 mmol/L inhibited brain lipid peroxidation. Retinol and retinol acetate were the most effective inhibitors. It is concluded from this study that retinol and its analogs can be considered as potential antioxidant factors, more potent than some of the well-known antioxidants such as alpha-tocopherol and butylated hydroxytoluene.  相似文献   

18.
In this report we studied DNA damage and lipid peroxidation in rat liver nuclei incubated with iron ions for up to 2 hrs in order to examine whether nuclear DNA damage was dependent on membrane lipid peroxidation. Lipid peroxidation was measured as thio-barbituric acid-reactive substances (TBARS) and DNA damage was measured as 8-OH-deoxyguanosine (8-OH-dG). We showed that Fe(II) induced nuclear lipid peroxidation dose-dependently but only the highest concentration (1.0 mM) used induced appreciable 8-OH-dG. Fe(II1) up to 1 mM induced minimal lipid peroxidation and negligible amounts of 8-OH-dG. Ascorbic acid enhanced Fe(II)-induced lipid peroxidation at a ratio to Fe(II) of 1:l but strongly inhibited peroxidation at ratios of 2.5:l and 5:l. By contrast, ascorbate markedly enhanced DNA damage at all ratios tested and in a concentration-dependent manner. The nuclear DNA damage induced by 1 niM FeSO4/5 mM ascorbic acid was largely inhibited by iron chelators and by dimethylsulphoxide and manni-tol, indicating the involvement of OH. Hydrogen peroxide and superoxide anions were also involved, as DNA damage was partially inhibited by catalase and, to a lesser extent, by superoxide dismutase. The chain-breaking antioxidants butylated hydroxytoluene and diphenylamine (an alkoxyl radical scavenger) did not inhibit DNA damage. Hence, this study demonstrated that ascorbic acid enhanced Fe(II)-induced DNA base modification which was not dependent on lipid peroxidation in rat liver nuclei.  相似文献   

19.
Oxidative stress is considered to be involved in the pathophysiology of all cancers. The aim of this study is to examine oxidative stress and antioxidant status in patients with breast cancer by evaluation of the serum levels of total antioxidant capacity (TAC) and lipid peroxidation products as malondialdehyde (MDA) and lipid hydroperoxide and to investigate the relationship between these parameters, oxidative stress and serum lipids and lipoproteins. In our study, serum TAC, MDA, lipid hydroperoxide, HDL-cholesterol, VLDL-cholesterol, LDL-cholesterol, total cholesterol, triacylglycerol (TAG), albumin and uric acid levels of 56-breast cancer patients in different clinical stages and 18 healthy women were determined. Significantly lower-levels of TAC were detected in patients with breast cancer in comparison to controls (2.01 +/- 0.01 mmol/l and 2.07 +/- 0.03 mmol/l, respectively, p < 0.05). Serum MDA levels of the patients were higher compared to the controls (3.64 +/- 0.25 microM and 2.72 +/- 0.22 microM, respectively, p < 0.05). No significant difference between lipid hydroperoxide levels of patients and controls was found (0.33 +/- 0.05 microM and 0.32 +/- 0.01 microM, respectively, p > 0.05). These data show that lower TAC and higher MDA levels i.e. increased oxidative stress may be related to breast cancer.  相似文献   

20.
A sensitive analytical method was developed in order to study the rhodopsin-porphyropsin system in the eye. Oximes of 11-cis-retinal, all-trans-retinal, 11-cis-3-dehydroretinal, and all-trans-3-dehydroretinal were determined quantitatively by high-pressure liquid chromatography. This method was applied to the analysis of retinal and 3-dehydroretinal in the retinas of bullfrog and goldfish. The results agreed with those obtained from the bleaching kinetics of visual pigment extracted with detergent. A reliable result is obtained if the tissue contains more than 5 pmol of retinal (or 3-dehydroretinal). The chromophore composition could be determined in the eye of a small freshwater prawn, Palaemon pancidence, using 50 pmol of 11-cis-retinal and no 3-dehydroretinal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号