共查询到20条相似文献,搜索用时 15 毫秒
1.
(RS)-beta-Ionol and (RS)-2-methyl-4-octanol were resolved by using (S)-2-methoxy-2-(1-naphthyl)propanoic acid [(S)-MalphaNP acid]. The specific stereochemistry of each MalphaNP ester was elucidated by 2D NMR analyses, and shielding by the 1-naphthyl group was observed in both the 1H- and 13C-NMR spectra. Solvolysis of the individual (S)-MalphaNP esters gave four single-enantiomer alcohols. The normal-phase HPLC elution order of each MalphaNP ester is also discussed. 相似文献
2.
《Bioscience, biotechnology, and biochemistry》2013,77(4):818-820
Electrophilic additions of DL- and L-Cys to propenoic acid afforded (RS)- and (R)-2-amino-3-(2-carboxyethylthio)propanoic acids [(RS)- and (R)-ACE], respectively. (RS)-ACE was found to exist as a conglomerate based on its melting point, solubility, and infrared spectrum. (RS)-ACE was optically resolved by preferential crystallization to yield (R)- and (S)-ACE. The obtained (R)- and (S)-ACE were efficiently recrystallized from water, taking account of the solubility of (RS)-ACE, to give them in optically pure form. 相似文献
3.
Resolution of (2RS,3RS)-2-[alpha-(2-methoxymethoxyphenoxy)phenylmethyl]morpholine, 11, with (+) mandelic acid led to the formation of (+)-(2S,3S)-2-[alpha-(2-methoxymethoxyphenoxy)phenyl methyl] morpholine (11a). Compound 11 was synthesized in seven steps from (2RS,3RS)-cinnamyl alcohol-2,3-epoxide (4), with an overall yield of 17%. Cleavage of the methoxymethyl group of the Fmoc derivative 12 with catalytic amounts of p-toluenesulfonic acid in methanol afforded (+)-(2S,3S)-2-(2-morpholin-2-yl-2-phenylmethoxy)phenol 2. The synthetic utility as well as the configuration of compound 2 has been demonstrated by converting (S,S)-2-(2-morpholin-2-yl-2-phenylmethoxy)phenol 2 to (2S,3S)-2-[alpha-(2-ethoxyphenoxy)phenylmethyl]morpholine (1) and (2S,3S)-2-(2-methoxyphenoxy) benzyl)morpholine (16), two potential norepinephrine reuptake inhibitors under clinical evaluation. 相似文献
4.
Vávra J Vodicka P Streinz L Budesínský M Koutek B Ondrácek J Císarová I 《Chirality》2004,16(9):652-660
The spectral properties of diastereomeric esters and amides (1b-20b), derived from optically pure 2-(1-naphthyl)-2-phenylacetic acids (1-NPA), were systematically investigated. It was found that all compounds prepared exhibit the NMR spectral nonequivalence (Deltadelta) with regular sign distribution of particular groups according to the predicted model. Further, the analysis of data revealed that the phenyl ring is responsible for a shielding effect (upfield shift) instead of a naphthyl one. This conclusion is supported by the crystallographic analysis showing the almost ap-arrangement of the acid methine hydrogen atom and carbonyl group. In this arrangement, the phenyl ring faces toward the ester part of the molecule while the naphthyl one is orthogonal to the phenyl plane. Therefore, the mutual position of phenyl and alkyl groups with respect to the central molecule co-planarity thus determines the chemical shifts of the alcohol/amine substituents. The relative magnitude of the Deltadelta corresponds to those of Mosher's derivatives. 相似文献
5.
An efficient methodology for the preparation of the α‐tetrasubstituted proline analog (S,S,S)‐2‐methyloctahydroindole‐2‐carboxylic acid, (S,S,S)‐(αMe)Oic, and its enantiomer, (R,R,R)‐(αMe)Oic, has been developed. Starting from easily available substrates and through simple transformations, a racemic precursor has been synthesized in excellent yield and further subjected to HPLC resolution using a cellulose‐derived chiral stationary phase. Specifically, a semipreparative (250 mm × 20 mm ID) Chiralpak® IC column has allowed the efficient resolution of more than 4 g of racemate using a mixture of n‐hexane/tert‐butyl methyl ether/2‐propanol as the eluent. Multigram quantities of the target amino acids have been isolated in enantiomerically pure form and suitably protected for incorporation into peptides. Chirality, 2011. © 2011 Wiley‐Liss, Inc. 相似文献
6.
《Bioscience, biotechnology, and biochemistry》2013,77(12):2382-2387
Optically active 1,4-thiazane-3-carboxylic acid [TCA] was synthesized from cysteine via optical resolution by preferential crystallization. The intermediate (RS)-2-amino-3-[(2-chloroethyl)sulfanyl]propanoic acid hydrochlo-ride [(RS)-ACS?HCl] was found to exist as a conglomerate based on its melting point, solubility and IR spectrum. (RS)-ACS?HCl was optically resolved by preferential crystallization to yield (R)- and (S)-ACS?HCl. (R)- and (S)-ACS?HCl thus obtained were recrystallized from a mixture of hydrochloric acid and 2-propanol, taking account of the solubility of (RS)-ACS?HCl, efficiently yielding both enantiomers in optically pure forms. (R)- and (S)-TCA were then respectively synthesized by the cyclization of (R)- and (S)-ACS?HCl in ethanol in the presence of triethylamine. 相似文献
7.
The determination of enantiomeric purity of (R)- and (S)-2-hydroxy-4-phenylbutyric acid by chiral HPLC is described. Good resolution has been obtained on covalently bonded L-hydroxyproline saturated with Cu(II) ions. The method makes possible the determination of enantiomeric purity in media containing growing cells. © 1994 Wiley-Liss, Inc. 相似文献
8.
Y Tanaka Y Shimomura T Hirota A Nozaki M Ebata W Takasaki E Shigehara R Hayashi J Caldwell 《Chirality》1992,4(6):342-348
It has been proposed that the chiral inversion of the 2-arylpropionic acids is due to the stereospecific formation of the (-)-R-profenyl-CoA thioesters which are putative intermediates in the inversion. Accordingly, amino acid conjugation, for which the CoA thioesters are obligate intermediates, should be restricted to those optical forms which give rise to the (-)-R-profenyl-CoA, i.e., the racemates and the (-)-(R)-isomers. We have examined this problem in dogs with respect to 2-phenylpropionic acid(2-PPA). Regardless of the optical configuration of 2-phenylpropionic acid administered, the glycine conjugate was the major urinary metabolite and this was shown to be exclusively the (+)-(S)-enantiomer by chiral HPLC. Both (-)-(R)- and (+)-(S)-2-phenylpropionic acid were present in plasma after the administration of either antipode, and further evidence of the chiral inversion of both enantiomers was provided by the presence of some 25% of the opposite enantiomer in the free 2-phenylpropionic acid and its glucuronide excreted in urine after administration of (-)-(R)- and (+)-(S)-2-phenylpropionic acid. The (+)-(S)-enantiomer underwent chiral inversion to the (-)-(R)-antipode when incubated with dog hepatocytes. These data suggests that both enantiomers of 2-phenylpropionic acid are substrates for canine hepatic acyl CoA ligase(s) and thus undergo chiral inversion, but that the CoA thioester of only (+)-(S)-2-phenylpropionic acid is a substrate for the glycine N-acyl transferase. These studies are presently being extended to the structure and species specificity of the reverse inversion and amino acid conjugation of profen NSAIDs. 相似文献
9.
Esters of 1-(1-naphthly)ethylurea derivatives of L-valine, L-leucine, L-tert-leucine, and L-proline are examined as organic-soluble chiral nuclear magnetic resonance (NMR) resolving agents. The reagents are useful for resolving the spectra of chiral sulfoxides, amines, alcohols, and carboxylic acids. Enantiomeric resolution is caused by a combination of diastereomeric effects and the different association constants of the substrates with the resolving agents. Organic-soluble lanthanide species are added to resolving agent-substrate mixtures and often enhance the enantiomeric resolution. The enhancement occurs because the substrate that exhibits weaker binding with the resolving agent is more available to bond to the lanthanide. Broadening in the spectra with lanthanides is reduced at 50°C. Enantiomeric resolution is still observed at elevated temperatures. Chirality 9:1–9, 1997. © 1997 Wiley-Liss, Inc. 相似文献
10.
对产青霉素G酰化酶的重组枯草芽胞杆菌发酵产酶条件进行优化,确定优化后的发酵条件:可溶性淀粉10g/L、蛋白胨12g/L、酵母粉3g/L、NaCl10g,/L;pH7.5、培养温度37℃、装液量80mL(500mL三角瓶)、培养28h,青霉素G酰化酶的表达水平由最初的7.34U/mL提高至18.23U/mL。以表达青霉素G酰化酶的枯草芽胞杆菌发酵液为酶源,在水相中对映选择性催化N-苯乙酰-(R,S)-邻氯苯甘氨酸制备(S)-邻氯苯甘氨酸,当底物浓度为100mol/L时转化4h,转化率达44.2%。对底物浓度为80mmoL/L反应液中的(S)-邻氯苯甘氨酸进行分离,达到理论收率的94.29%(以N-苯乙酰-(R,S)-邻氯苯甘氨酸的0.5倍摩尔量为理论产率),e.e.值大于99.9%。170℃条件下,N-苯乙酰-(R)-邻氯苯甘氨酸与苯乙酸共熔消旋为N-苯乙酰-(R,S)-邻氯苯甘氨酸可用于循环拆分。 相似文献
11.
12.
The synthesis of (22R)- and (22S)-5beta-cholestane-3alpha,7alpha,12alpha,22,25-pentols is described. Bisnorcholyl aldehyde was prepared from cholic acid and converted into the cholestane-pentols by a Grignard reaction with 3-methyl-3-(tetrahydropyran-2-yloxy)-butynylmagnesium bromide followed by hydrogenation and acid hydrolysis. One of the synthetic pentols, the 22R-isomer was identical with a metabolite of 5beta-cholestane-3alpha,7alpha,25-triol formed in the rabbit. 相似文献
13.
The emission and polarization spectra of 1-phenyl-3-(2-naphthyl)-2-pyrazoline (PNP) in various environments were studied. Compared to the widely used orientational membrane probe 1,6-diphenylhexatriene (DPH), PNP is five times less photolabile and since its fluorescence emission maximum is at longer wavelengths , it is more suitable for use with intact erythrocytes. The limiting fluorescence anisotropy of PNP is 0.385. In erythrocyte ghosts, the steady-state emission anisotropy of PNP is a decreasing function of wavelength and its temperature dependence parallels that of DPH, dropping from 0.298 at 2°C to 0.185 at 38°C when averaged between 420 and 470 nm. 相似文献
14.
The unusual amino acid S2-(—)-4-amino-2-hydroxybutanoic acid (S-AHBA) (1), a structural component of the antibiotic Amikacin, has been prepared via yeast-catalyzed stereoselective reduction of methyl-4-benzyloxycarbonyloxyamino-2-oxobutanoate (5). The most suitable yeast was found to be Saccharomyces carlsbergensis ATCC2345 and Saccharomyces sp. Edme, which gave 40% and 54% yield, respectively, of (S)-(+)-6 (88% ee). 相似文献
15.
M Waelbroeck J Camus M Tastenoy E Mutschler C Strohmann R Tacke G Lambrecht J Christophe 《Chirality》1991,3(2):118-123
(R)-Hexahydro-difenidol has a higher affinity for M1 receptors in NB-OK 1 cells, pancreas M3 and striatum M4 receptors (pKi 7.9 to 8.3) than for cardiac M2 receptors (pKi 7.0). (S)-Hexahydro-difenidol, by contrast, is nonselective (pKi 5.8 to 6.1). Our goal in the present study was to evaluate the importance of the hydrophobic phenyl, and cyclohexyl rings of hexahydro-difenidol for the stereoselectivity and receptor selectivity of hexahydro-difenidol binding to the four muscarinic receptors. Our results indicated that replacement of the phenyl ring of hexahydro-difenidol by a cyclohexyl group (----dicyclidol) and of the cyclohexyl ring by a phenyl moiety (----difenidol) induced a large (4- to 80-fold) decrease in binding affinity for all muscarinic receptors. Difenidol had a significant preference for M1, M3, and M4 over M2 receptors; dicyclidol, by contrast, had a greater affinity for M1 and M4 than for M2 and M3 receptors. The binding free energy decrease due to replacement of the phenyl and the cyclohexyl groups of (R)-hexahydro-difenidol by, respectively, a cyclohexyl and a phenyl moiety was almost additive in the case of M4 (striatum) binding sites. In the case of the cardiac M2, pancreatic M3, or NB-OK 1 M1 receptors the respective binding free energies were not completely additive. These results suggest that the four (R)-hexahydro-difenidol "binding moieties" (phenyl, cyclohexyl, hydroxy, and protonated amino group) cannot simultaneously form optimal interactions with the M1, M2, and M3 muscarinic receptors.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
Some 3-t-butyldimethylsilyloxy derivatives, synthesized from the cheap commercially available (1S,2S)-2-amino-1-phenyl-1,3-propanediol [(1S,2S)- 1 ], have been successfully employed as new chiral ligands in the asymmetric Reformatsky reaction on aldehydic substrates. The influence both of the substrate and of the ligand on the stereochemical pathway has been investigated by varying the structure of the carbonyl substrate and of the optically active aminodiols. © 1995 Wiley-Liss, Inc. 相似文献
17.
《Bioscience, biotechnology, and biochemistry》2013,77(5):1338-1341
An attempt was made to use a simple procedure to obtain (R)- and (S)-2-aminobutanoic acids [(R)- and (S)-1] which are non-proteinogenic α-amino acids and are useful as chiral reagents in asymmetric syntheses. Compound (RS)-1 p-toluenesulfonate [(RS)-2], which is known to exist as a conglomerate, was optically resolved by replacing crystallization with (R)- and (S)-methionine p-toluenesulfonate [(R)- and (S)-3] as optically active co-solutes. When (S)-3 was employed as the co-solute, (R)-2 was preferentially crystallized from a supersaturated solution of (RS)-2 in 1-propanol, as was (S)-2 in the presence of (R)-3. (R)- and (S)-2 recrystallized from 1-propanol were treated with triethylamine in methanol to give (R)- and (S)-1 in optically pure forms. 相似文献
18.
During the resolution of 2-chloromandelic acid with (R)-(+)-N-benzyl-1-phenylethylamine, the crystals of the less soluble salt were grown, and their structure were determined and presented. The chiral discrimination mechanism was investigated by examining the weak intermolecular interactions (such as hydrogen bond, CH/π, and van der Waals interactions) and molecular packing mode in crystal structure of the less soluble diastereomeric salt. A one-dimensional double-chain hydrogen-bonding network and a "lock-and-key" supramolecular packing mode are disclosed. The investigation demonstrates that hydrophobic layers with corrugated surfaces can fit into the grooves of one another to realize a compact packing, when the molecular structure of resolving agent is much larger than that of the racemate. This "lock-and-key" assembly is recognized to be another characteristic of molecular packing contributing to the chiral discrimination, in addition to the well-known sandwich-like packing by hydrophobic layers with planar boundary surfaces. 相似文献
19.
Garima Singh Ajai K. Singh John E. Drake M.B. Hursthouse 《Inorganica chimica acta》2005,358(4):912-918
Two tellurium ligands 1-(4-methoxyphenyltelluro)-2-[3-(6-methyl-2-pyridyl)propoxy]ethane (L1) and 1-ethylthio-2-[2-thienyltelluro]ethane (L2) have been synthesized by reacting nucleophiles [4-MeO-C6H4Te−] and [C4H3S-2-Te−] with 2-[3-(6-methyl-2-pyridyl)propoxy]ethylchloride and chloroethyl ethyl sulfide, respectively. Both the ligands react with HgBr2 resulting in complexes of stoichiometry [HgBr2 · L1/L2] (1/4), which show characteristic NMR (1H and 13C{1H}). On crystallization of 1 from acetone-hexane (2:1) mixture, the cleavage of L1 occurs resulting in 4-MeOC6H4HgBr (2) and [RTe+→HgBr2]Br− (3) (where R = -CH2CH2OCH2CH2CH2-(2-(6-CH3-C5H3N))). The 2 is characterized by X-ray diffraction on its single crystal. It is a linear molecule and is the first such system which is fully characterized structurally. The Hg-C and Hg-Br bond lengths are 2.085(6) and2.4700(7) Å. The distance of four bromine atoms (3.4041(7)-3.546(7) Å) around Hg (cis to C) is greater than the sum of van der Waal’s radii 3.30 Å. This mercury promoted cleavage is observed for an acyclic ligand of RArTe type for the first time and is unique, as there appears to be no strong intramolecular interaction to stabilize the cleavage products. The 4 on crystallization shows the cleavage of organotellurium ligand L2 and formation of a unique complex [(EtS(CH2)2SEt)HgBr(μ-Br)Hg(Br)(μ-Br)2Hg(Br)(μ-Br)BrHg(EtS(CH2)2SEt)] · 2HgBr2 (5), which has been characterized by single crystal structure determination and 1H and 13C{1H} NMR spectra. The elemental tellurium and [C4H3SCH2]2 are the other products of dissociation as identified by NMR (proton and carbon-13). The cleavage appears to be without any transmetalation and probably first of its kind. The centrosymmetric structure of 5 is unique as it has [HgBr3]− unit, one Hg in distorted tetrahedral geometry and one in pseudo-trigonal bipyramidal one. The molecule of 5 may also be described as having [(EtSCH2CH2SEt)HgBr]+ [HgBr3]− units, which dimerize and co-crystallize with two HgBr2 moieties. There are very weak Hg?Br interactions between co-crystallized HgBr2 units and rest of the molecule. [Hg(3)-Br(1)/Hg(3)-Br(4) = 3.148(1)/3.216(1) Å]. The bridging Hg?Br distances, Hg(2)-Br(4)′, Hg(2)′-Br(4) and Hg(1)-Br(2), are from 2.914(1) to 3.008(1) Å. 相似文献