首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the course of screening for antioxidative carotenoids from bacteria, we isolated and identified a novel carotenoid, OH-chlorobactene glucoside hexadecanoate (4), and rare carotenoids, OH-chlorobactene glucoside (1), OH-γ-carotene glucoside (2) and OH-4-keto-γ-carotene glucoside hexadecanoate (3) from Rhodococcus sp. CIP. The singlet oxygen (1O2) quenching model of these carotenoids showed potent antioxidative activities IC50 14.6 μM for OH-chlorobactene glucoside hexadecanoate (4), 6.5 μM for OH-chlorobactene glucoside (1), 9.9 μM for OH-γ-carotene glucoside (2) and 7.3 μM for OH-4-keto-γ-carotene glucoside hexadecanoate (3).  相似文献   

2.
Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) produced N-acyl-D-aspartate amidohydrolase (D-AAase) in the presence of N-acetyl-D-aspartate as an inducer. The enzyme was purified to homogeneity. The enzyme had a molecular mass of 56 kDa and was shown by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) to be a monomer. The isoelectric point was 4.8. The enzyme had maximal activity at pH 7.5 to 8.0 and 50°C, and was stable at pH 8.0 and up to 45°C. N-Formyl (Km=12.5 mM), N-acetyl (Km=2.52 mM), N-propionyl (Km=0.194 mM), N-butyryl (Km=0.033 mM), and N-glycyl (Km =1.11 mM) derivatives of D-aspartate were hydrolyzed, but N-carbobenzoyl-D-aspartate, N-acetyl-L-aspartate, and N-acetyl-D-glutamate were not substrates. The enzyme was inhibited by both divalent cations (Hg2+, Ni2+, Cu2+) and thiol reagents (N-ethylmaleimide, iodoacetic acid, dithiothreitol, and p-chloromercuribenzoic acid). The N-terminal amino acid sequence and amino acid composition were analyzed.  相似文献   

3.
Minced or cut-up leaves of Chinese chive (Allium tuberosum Rottler) contain thiosulfinates and their disproportionate reaction products. Among these organosulfur compounds, methyl methanethiosulfinate was found to be an uncompetitive inhibitor of β-glucuronidase. Approximately 80% of the enzyme activity was inhibited by methyl methanethiosulfinate at 50 µM, the IC50 value being comparable to 3.6 µM.  相似文献   

4.
Two effective cytochrome P450 (CYP) inhibitors were isolated from tarragon, Artemisia dracunculus. Their structures were spectroscopically identified as 2E,4E-undeca-2,4-diene-8,10-diynoic acid isobutylamide (1) and 2E,4E-undeca-2,4-diene-8,10-diynoic acid piperidide (2). Both compounds had dose-dependent inhibitory effects on CYP3A4 activity with IC50 values of 10.0 ± 1.3 µM for compound 1 and 3.3 ± 0.2 µM for compound 2, and exhibited mechanism-based inhibition. This is the first reported isolation of effective CYP inhibitors from tarragon (Artemisia dracunculus) purchased from a Japanese market.  相似文献   

5.
In the screening for inhibitors of cyclic adenosine-3′,5′-monophosphate phosphodiesterase, two compounds, PDE-I (C13H13N3O5) and PDE-II (C14H14N2O5), were isolated from culture filtrates of a Streptomyces. Concentrations for 50% inhibitions of PDE-I and PDE-II against the high Km enzyme were 15 µm and 13 µm, and those against the low Km enzyme were 65 µm and 130 µm, respectively. Production, isolation and characterization of these compounds are described.  相似文献   

6.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38–39 kDa, as judged by SDS–PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5±4.5 μM and uronic acids, such as D-galacturonic acid (Km=3.79±0.5 mM) and D-glucuronic acid (Km=4.67±0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP+. The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H2O2, suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

7.
Different arabinosides and ribosides, viz. Ara‐DDA or 9(1‐β‐d‐arabinofuranosyl) 1,3‐dideazaadenine (6), Ara‐NDDP or 9(1‐β‐d‐arabinofuranosyl) 4‐nitro‐1,3‐dideazapurine (7), Ara‐DKP or 1(1‐β‐d‐arabinofuranosyl) diketopiperazine (8), Ribo‐DDA or 9(1‐β‐d‐ribofuranosyl) 1,3‐dideazaadenine (9) and Ribo‐NDDP or 9(1‐β‐d‐ribofuranosyl) 4‐nitro‐1,3‐dideazapurine (10) have been synthesized as probable antiviral agents. The arabinosides have been synthesized using the catalyst TDA‐1 that causes stereospecific formation of β‐nucleosides while a one‐pot synthesis procedure was adopted for the synthesis of the ribonucleosides where β‐anomers were obtained in higher yields. All the five nucleoside analogs have been screened for antiviral property against HIV‐1 (IIIB), HSV‐1 and 2, parainfluenza‐3, reovirus‐1 and many others. It was observed that arabinosides had greater inhibitory action than ribosides. The compound 7 or Ara‐NDDP has shown maximum inhibition of HIV‐1 replication than the rest of the molecules with an IC50 of 79.4 µg/mL.  相似文献   

8.
The mutual binding inhibition of tetrodotoxin and saxitoxin to their binding protein from the plasma of Fugu pardalis was investigated by HPLC. The values for the half inhibitory concentration of tetrodotoxin (1.6 μM) binding to this protein (1.2 μM) for saxitoxin, and of saxitoxin (0.47 μM) binding to that (0.30 μM) for tetrodotoxin were 0.35±0.057 μM and 81±16 μM (n=2), respectively.  相似文献   

9.
Single cells were prepared from mesocarp tissue of ripe persimmon (Diospyros kaki cv. Fuyu) fruits, and inter- or intracellular localization of acid invertase (AI, EC 3.2.1.26) was studied. AI was localized in the intercellular fraction (cell wall fraction). AI was isolated and purified from the cell wall fraction of ripe persimmon fruits by column chromatography on SE-53 cellulose and Toyopearl HW 55F. The specific activity of purified AI was 570 units per mg protein at 30°C. The molecular mass of AI was estimated to be 44 kDa by gel filtration over Sephacryl S-200 and 70 kDa by SDS–PAGE. The optimum pH of the activity for sucrose was 4.25. The purified enzyme hydrolyzed sucrose and raffinose but not melibiose. The enzyme had a Km of 3.2 mM for sucrose and a Km of 2.6 mM for raffinose. Silver nitrate (5 μM), HgCI2 (2 μM), p-chloromercuribenzoate (100mM), pyridoxamine (10mM), and pyridoxine (2.5mM) inhibited AI activity by 95, 85, 100, 41, and 300%, respectively.  相似文献   

10.
An NADP-specific glutamate dehydrogenase [L-glutamate: NADP+ oxidoreductase (deaminating), EC 1.4.1.4] from alkaliphilic Bacillus sp. KSM-635 was purified 5840-fold to homogeneity by a several-step procedure involving Red-Toyopearl affinity chromatography. The native protein, with an isoelectric point of pH 4.87, had a molecular mass of approximately 315 kDa consisting of six identical summits each with a molecular mass of 52 kDa. The pH optima for the aminating and deaminating reactions were 7.5 and 8.5, respectively. The optimum temperature was around 60°C for both. The purified enzyme had a specific activity of 416units/mg protein for the aminating reaction, being over 20-fold greater than that for deaminating reaction, at the respective pH optima and at 30°C. The enzyme was specific for NADPH (Km 44 μM), 2-oxoglutarate (Km 3.13 mM), NADP+ (Km 29 μM), and L-glutamate (Km 6.06 mM). The Km for NH4Cl was 5.96 mM. The enzyme could be stored without appreciable loss of enzyme activity at 5°C for half a year in phosphate buffer (pH 7.0) containing 2 mM 2-mercaptoethanol, although the enzyme activity was abolished within 20 h by freezing at ?20°C.  相似文献   

11.
A chemical investigation of Digitalis purpurea seeds led to the isolation of three new cardenolide glycosides (1, 8 and 11), together with 12 known cardenolide glycosides (27, 9, 10 and 1215). The structures of 1, 8 and 11 were determined by 1D and 2D NMR spectroscopic analyses and the results of an acid or enzymatic hydrolysis. The cytotoxic activity of the isolated compounds (115) against HL-60 leukemia cells was examined. Compounds 2, 9, 11 and 12 showed potent cytotoxicity against HL-60 cells with respective 50% inhibition concentration (IC50) values of 0.060, 0.069, 0.038, and 0.034 µM. Compounds 2, 9 and 11 also exhibited potent cytotoxic activity against HepG2 human liver cancer cells with respective IC50 values of 0.38, 0.79, and 0.71 µM. An investigation of the structure-activity relationship showed that the cytotoxic activity was reduced by the introduction of a hydroxy group at C-16 of the digitoxigenin aglycone, methylation of the C-3' hydroxy group at the fucopyranosyl moiety, and acetylation of the C-3' hydroxy group at the digitoxopyranoyl moiety.  相似文献   

12.
Sulfated polysaccharides (SP) isolated from freshwater green algae, Spirogyra neglecta (Hassall) Kützing, and fractionated SPs were examined to investigate their molecular characteristics and immunomodulatory activity. The crude and fractionated SPs (F1, F2, and F3) consisted mostly of carbohydrates (68.5–85.3%), uronic acids (3.2–4.9%), and sulfates (2.2–12.2%) with various amounts of proteins (2.6–17.1%). d-galactose (23.5–27.3%), d-glucose (11.5–24.8%), l-fucose (19.0–26.7%), and l-rhamnose (16.4–18.3%) were the major monosaccharide units of these SPs with different levels of l-arabinose (3.0–9.4%), d-xylose (4.6–9.8%), and d-mannose (0.4–2.3%). The SPs contained two sub-fractions with molecular weights (Mw) ranging from 164 × 103 to 1460 × 103 g/mol. The crude and fractionated SPs strongly stimulated murine macrophages, producing considerable amounts of nitric oxide and various cytokines via up-regulation of their mRNA expression by activation of nuclear factor-kappa B and mitogen-activated protein kinases pathways. The main backbone of the most immunoenhancing SP was (1→3)-l-Fucopyranoside, (1→4,6)-d-Glucopyranoside, and (1→4)-d-Galactopyranoside.  相似文献   

13.
Achillinin A (2β,3β-epoxy-1α,4β,10α-trihydroxyguai-11(13)-en-12,6α-olide, 1), a new guaianolide isolated from the flower of Achillea millefolium, exhibited potential antiproliferative activity to A549, RERF-LC-kj and QG-90 cells with 50% inhibitory concentration (IC50) values of 5.8, 10 and 0.31 μM, respectively.  相似文献   

14.
Abstract

Heavy metals phytoextraction potential of swollen duckweed (Lemna gibba Linn.) and lesser duckweed (Lemna aequinoctialis Welw.) was determined under greenhouse conditions by exposing to untreated industrial/municipal effluent for a period of 21?days. The nickel (Ni), lead (Pb), and cadmium (Cd) concentrations in water samples were measured weekly and in plant biomass at the termination of experiments. Significant differences (p?<?0.05) between initial and final physicochemical parameters and in heavy metal concentrations of plant and water samples were observed. Periodically measured metal concentrations in mediums revealed that removal percentage was dependent on initial Ni (2.15?mg L?1), Pb (1.51?mg L?1), and Cd (0.74?mg L?1) concentrations. The final metal removal percentages were in the sequence of Ni (97%) > Pb (94%) > Cd (90%) when treated with Lemna gibba L. as compared to control (9–12% reduction). High biomass production of Lemna gibba L. resulted in a large metal reduction in the growth medium and the total plant metal contents were in the sequence of Ni (427?µg) > Pb (293?µg) > Cd (105?µg). The lesser duckweed did not survive under experimental conditions. Based on these results, we concluded that Lemna gibba L. is a good candidate for phytoremediation of wastewater.  相似文献   

15.
To investigate the substrate specificity of β-l-rhamnosidase, the following β-l-rhamnopyranosides were synthesized: 1-(β-l-rhamnopyranosyl)-dl-glycerol (1), methyl β-l-rhamnopyranoside (2), methyl 2-O-(β-l-rhamnopyranosyl)-β-d-glucopyranoside (3) and methyl 2-O-β(β-l-rhamnopyranosyl)-α-l-arabinopyranoside (4). The synthesis of 3 was performed using l-quinovose with neighboring group participation, which lead stereoselectively to the β-l-quinovoside. The 2-OH of the l-quinovo-unit was selectively deblocked, oxidized to the keto group, and then stereoselectively reduced, whereby 3 was produced.  相似文献   

16.
The substrate specificity of sugar beet α-giucosidase was investigated. The enzyme showed a relatively wide specificity upon various substrates, having α-1,2-, α-1,3-, α-1,4- and α-l,6-glucosidic linkages.

The relative hydrolysis velocity for maltose (G2), nigerose (N), kojibiose (K), isomaltose (I), panose (P), phenyl-a-maltoside (?M) and soluble starch (SS) was estimated to be 100:130: 10.7: 22.6: 54.6: 55.8: 120 in this order; that for malto-triose (G3), -tetraose (G4), -pentaose (G5), -hexaose (G6), -heptaose (G7), -octaose (G8), amyloses (G13) and (G17), 91: 91: 91: 91: 80: 57: 75: 73. The Km values for N, K, I, P, and SS were 16.7 mM, 1.25 mM, 10.8 mM, 8.00 mM, 4.12 mM and 1.90 mg/ml, respectively; that for G2, G3, G4, G5, G6, G7, G8, G13 and G17 were 20.0 mM, 3.67 mM, 2.34 mM, 0,64 mM, 0.42 mM, 0.32 mM, 0.23 mM, 0.36 mM and 0.26 mM, respectively.

The enzyme, though showed higher affinity and activity toward soluble starch than toward maltose, was considered essentially to be an α-glucosidase.  相似文献   

17.
α-D-Xylosidase II activity from Aspergillus flavus MO-5 was increased roughly 5- to 10-fold by use of xylose instead of methyl α-D-xylopyranoside (α-MX) as a carbon source.

The enzyme was purified to an electrophoretically pure state by successive chromatography on Q-Sepharose, Phenyl Superose, PL-SAX, and TSK-gel G3000SWXL. The purified enzyme hydrolyzed isoprimeverose [α-D-xylopyranosyl-(1→6)-D-glucopyranose] and p-nitrophenyl α-D-xylopyranoside (α-p-NPX), but not α-MX or xyloglucan oligosaccharide. The apparent Km and Vmax of the enzyme for α-p-NPX and isoprimeverose were 0.97 mM and 28.0 µmol/min/mg protein, and 47.62 mM and 2.0 µmol/min/mg protein, respectively. This enzyme had an apparent molecular weight of 67,000 by SDS-polyacrylamide gel electrophoresis and 180,000 by gel filtration chromatography (TSK-gel G3000SWXL).

The enzyme showed the highest activity at pH 6.0 and 40°C, and was stable in the pH range from 6.0 to 7.0 and at the temperatures up to 40°C. The activity was inhibited by Cu2+, Zn2+, Hg2+, p-CMB, SDS, Fe3+, and N-ethylmaleimide.

This enzyme had nothing in common with α-D-xylosidase I and four α-D-xylosidases reported already.  相似文献   

18.
Delipidated cell walls from Aureobasidium pullulans were fractionated systematically.

The cell surface heteropolysaccharide contains D-mannose, D-galactose, D-glucose, and D-glucuronic acid (ratio, 8.5:3.9:1.0:1.0). It consists of a backbone of (1→6)-α-linked D-mannose residues, some of which are substituted at O-3 with single or β-(1→6)-linked D-galactofuranosyl side chains, some terminated with a D-glucuronic acid residue, and also with single residues of D-glucopyranose, D-galactopyranose, and D-mannopyranose.

This glucurono-gluco-galactomannan interacted with antiserum against Elsinoe leucospila, which also reacted with its galactomannan, indicating that both polysaccharides contain a common epitope, i.e., at least terminal β-galactofuranosyl groups and also possibly internal β-(1→6)-linked galactofuranose residues.

It was further separated by DEAE-Sephacel column chromatography to gluco-galactomannan and glucurono-gluco-galactomannan.

The alkali-extracted β-D-glucan was purified by DEAE-cellulose chromatography to afford two antitumor-active (1→3)-β-D-glucans. One of the glucans (Mr, 1–2 × 105) was a O-6-branched (1→3)-β-D-glucan with a single β-D-glucosyl residue, d.b., 1/7, and the other (Mr, 3.5–4.5 × 105) had similar branched structure, but having d.b., 1/5. Side chains of both glucans contain small proportions of β-(1→6)-and β-(1→4)-D-glucosidic linkages.  相似文献   

19.
The reaction conditions for the production of l-tryptophan from dl-5-indolyl- methylhydantoin by Flavobacterium sp. AJ-3940, and the cultural conditions for the formation of the enzyme involved by this bacterium were investigated. The optimal pH of this reaction was around 8.5 and the optimal temperature was between 45 to 55°C. The amount of l-tryptophan produced was remarkably increased by the addition of inosine, which formed a water insoluble adduct with l-tryptophan, to the reaction mixture because of the release of end-product inhibition by l-tryptophan. This enzyme was inducibly and intracellularly produced by Flavobacterium sp. AJ-3940 in proportion to the increase in cell growth. Cells showing high activity were obtained using a medium containing 5 g glucose, 5 g (NH4)2SO4, 1 g KH2PO4, 3 g K2HPO4, 0.1 g MgSO4 · 7H2O, 0.01 g CaCl2 · 2H2O, 50 ml corn steep liquor and 3.5 g dl-5-indolylmethylhydantoin in a total volume of 1 liter (pH 7.0). Under the best conditions, 43 mg/ml of l-tryptophan was produced from 50 mg/ml of dl-5-indolylmethylhydantoin with a molar yield of 97% in the presence of cells of Flavobacterium sp. AJ-3940. In addition, other l-aromatic amino acids such as l-phenylalanine, l-tyrosine, l-DOPA and related l-amino acids were also produced from the corresponding 5-substituted hydantoins by this bacterium containing the l-tryptophan-producing enzyme induced by dl-5-indolylmethylhydantoin.  相似文献   

20.
The cepA putative gene encoding a cellobiose phosphorylase of Thermotoga maritima MSB8 was cloned, expressed in Escherichia coli BL21-codonplus-RIL and characterized in detail. The maximal enzyme activity was observed at pH 6.2 and 80°C. The energy of activation was 74 kJ/mol. The enzyme was stable for 30 min at 70°C in the pH range of 6-8. The enzyme phosphorolyzed cellobiose in an random-ordered bi bi mechanism with the random binding of cellobiose and phosphate followed by the ordered release of D-glucose and α-D-glucose-1-phosphate. The K m for cellobiose and phosphate were 0.29 and 0.15 mM respectively, and the k cat was 5.4 s-1. In the synthetic reaction, D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, and 6-deoxy-D-glucose were found to act as glucosyl acceptors. Methyl-β-D-glucoside also acted as a substrate for the enzyme and is reported here for the first time as a substrate for cellobiose phosphorylases. D-Xylose had the highest (40 s-1) k cat followed by 6-deoxy-D-glucose (17 s-1) and 2-deoxy-D-glucose (16 s-1). The natural substrate, D-glucose with the k cat of 8.0 s-1 had the highest (1.1×104 M-1 s-1) k cat/K m compared with other glucosyl acceptors. D-Glucose, a substrate of cellobiose phosphorylase, acted as a competitive inhibitor of the other substrate, α-D-glucose-1-phosphate, at higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号