首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was found that the inhibition of the lysosomal acid lipase activity by rat apolipoprotein A-I (apo A-I) was increased with the degradation of apo A-I by the lysosomal proteases. We demonstrated that apo A-I could effectively inhibit the acid lipase activity even in the presence of the lysosomal proteases using the hepatic lysosomal fraction.  相似文献   

2.
We have reported a inhibitor of acid lipases in liver lysosomes and erythrocytes from chickens [M. Fujii et al., Int. J. Biochem., 22, 895–898 (1990)]. In this paper, the properties of the inhibitor were described in comparison with those of apo A-I of chicken.

The purified inhibitor migrated with the same mobility on SDS–PAGE as apo A-I, and had a molecular weight of 27,000. The peptide map from the lipase inhibitor was similar to that of apo A-I. Antibodies to the acid lipase inhibitor also reacted with apo A-I. Apo A-I inhibited the acid lipase activities of liver lysosomes and erythrocytes from chickens as strongly as the lipase inhibitor. The N-terminal amino acid sequence of lipase inhibitor was identical to that of apo A-I as far as residue 20. The amino acid sequence of peptides obtained from the inhibitor by cleavage with CNBr corresponded to internal sequence of apo A-I, and so the CNBr-peptides were derived by cleavage after the methionine residues in apo A-I. The findings showed that the inhibitor of the acid lipases in liver lysosomes and erythrocytes from chickens was identical to apo A-I.  相似文献   

3.
Incubation of rabbit plasma in vitro with hepatic lipase resulted in the hydrolysis of triacylglycerol in high-density lipoproteins (HDL) and a reduction in HDL particle size. These changes were accompanied by a decrease in the concentration of apolipoprotein A-I (apo A-I) in the HDL. The loss of apo A-I was demonstrated independently by ultracentrifugation, size exclusion chromatography and gradient gel-immunoblot analysis. It was unrelated to hydrolysis of HDL phospholipids but did correlate with the reduction in HDL particle size. These studies suggest that the concentration of apo A-I in HDL may be influenced by factors which regulate the metabolism of HDL core lipid constituents.  相似文献   

4.
This study shows that, in control and transgenic mice, there is a parallel increase in LCAT activity and plasma apo A-I concentrations during postnatal development. We also demonstrate that human apo A-I is a much more efficient activator (1.6-fold) of mouse LCAT activity than mouse apo A-I. We propose that the differences in amino acid sequence between human and mouse apo A-I may account for the higher LCAT activity with human apo A-I.  相似文献   

5.
Various combinations of incorporation and addition of apolipoprotein A-I (apo A-I) and apolipoprotein A-II (apo A-II) individually or together to a defined lecithin-cholesterol (250/12.5 molar ratio) liposome prepared by the cholate dialysis procedure were used to study the effect of apo A-II on lecithin:cholesterol acyltransferase (LCAT, EC 2.3.1.43) activity of both purified enzyme preparations and plasma. When apo A-I (0.1-3.0 nmol/assay) alone was incorporated or added to the liposome, apo A-I effectively activated the enzyme. By contrast, when apo A-II (0.1-3.0 nmol/assay) alone was incorporated into or added to the liposome, apo A-II exhibited minimal activation of LCAT activity, approximately 1% of the activity obtained by an equal amount of apo A-I. Addition of apo A-II (0.1-3.0 nmol/assay) together with apo A-I (0.8 nmol/assay) to the liposome reduced the LCAT activity to approximately 30% of the level obtained with addition of apo A-I alone. On the other hand, addition of apo A-II (0.1-3.0 nmol/assay) or addition of lecithin-cholesterol liposome containing apo A-II (0.1-3.0 nmol/assay) to lecithin-cholesterol liposome containing apo A-I (0.8 nmol/assay) did not significantly alter apo A-I activation of LCAT activity. However, when the same amounts (0.1-3.0 nmol/assay) of apo A-II were incorporated together with apo A-I (0.8 nmol/assay) into the liposome, apo A-II significantly stimulated LCAT activity as compared to activity obtained with incorporation of apo A-I alone. The maximal stimulation was obtained with 0.4 nmol apo A-II/assay for both purified and plasma enzyme. At this apo A-II concentration, approximately 4-fold and 1.8-fold stimulation was observed for purified enzyme and plasma enzyme, respectively. These results indicated that apo A-II must be incorporated together with apo A-I into lecithin-cholesterol liposomes to exert its stimulatory effect on LCAT activity and that apo A-II in high-density lipoprotein may play an important role in the regulation of LCAT activity.  相似文献   

6.
Ontogeny of lipase expression in winter flounder   总被引:3,自引:0,他引:3  
The partial sequencing of two lipases from winter flounder Pseudopleuronectes americanus , one most closely related to gastric, lingual and lysosomal acid lipase from other vertebrates and one most closely related to bile salt-activated lipase, is reported. Biochemical analyses of enzymatic activity demonstrated the greater contribution made by bile salt-activated lipase relative to neutral bile salt-independent lipase. Using molecular techniques, the tissue-specific expression of bile salt-activated lipase in pancreatic tissue and acid triacylglycerol lipase in a wide variety of organs was demonstrated. Furthermore, the developmental expression of these types of lipase in larval fish was established.  相似文献   

7.
Obesity is associated with increased serum endocannabinoid (EC) levels and decreased high-density lipoprotein cholesterol (HDLc). Apolipoprotein A-I (apo A-I), the primary protein component of HDL is expressed primarily in the liver and small intestine. To determine whether ECs regulate apo A-I gene expression directly, the effect of the obesity-associated ECs anandamide and 2-arachidonylglycerol on apo A-I gene expression was examined in the hepatocyte cell line HepG2 and the intestinal cell line Caco-2. Apo A-I protein secretion was suppressed nearly 50% by anandamide and 2-arachidonoylglycerol in a dose-dependent manner in both cell lines. Anandamide treatment suppressed both apo A-I mRNA and apo A-I gene promoter activity in both cell lines. Studies using apo A-I promoter deletion constructs indicated that repression of apo A-I promoter activity by anandamide requires a previously identified nuclear receptor binding site designated as site A. Furthermore, anandamide-treatment inhibited protein-DNA complex formation with the site A probe. Exogenous over expression of cannabinoid receptor 1 (CBR1) in HepG2 cells suppressed apo A-I promoter activity, while in Caco-2 cells, exogenous expression of both CBR1 and CBR2 could repress apo A-I promoter activity. The suppressive effect of anandamide on apo A-I promoter activity in Hep G2 cells could be inhibited by CBR1 antagonist AM251 but not by AM630, a selective and potent CBR2 inhibitor. These results indicate that ECs directly suppress apo A-I gene expression in both hepatocytes and intestinal cells, contributing to the decrease in serum HDLc in obese individuals.  相似文献   

8.
Apolipoprotein A-I (apo A-I) has an important role in the transport of cholesterol. This study describes the complete nucleotide and deduced amino acid sequence for apo A-I of LAP quail. A full length apo A-I cDNA clone for hyperlipidemia atherosclerosis prone (LAP) quail was isolated from a lambda gt10 liver cDNA library. The DNA sequence of LAP apo A-I cDNA was similar to that of normal Japanese quail. The deduced amino acid sequence of LAP apo A-I was hence identical to that of normal Japanese quail. LAP apo A-I mRNA is about 1.4 kilobases in length and expressed in a variety of tissues including small intestine, liver, lung, breast muscle, testis, and heart. Although the tissue distribution of apo A-I was similar between strains, LAP quail expressed more apo A-I mRNA than normal Japanese quail in all tissues examined. This tendency was pronounced with the small intestine. Although the concentration of serum apo A-I did not correlate with the tissue expression of mRNA, the observation may suggest that the increased apo A-I expression in LAP strain had some relevance to the susceptibility of this strain to the experimental atherosclerosis.  相似文献   

9.
In order to study the tissue-specific expression of rabbit apolipoprotein (apo) A-I, a 923-base-pair clone, pRBA-502, complementary to rabbit apo A-I mRNA was identified from a rabbit intestinal cDNA library by hybrid-select translation and immunoprecipitation methods. Northern blot and dot-blot hybridization, utilizing 32P-labeled pRBA-502, revealed that the rabbit apo A-I gene is expressed in the intestine, not in the liver and that rabbit apo A-I mRNA is about 950 nucleotides in length. The entire nucleotide sequence of pRBA-502 has been determined and the complete amino acid sequence of the corresponding apo A-I has been deduced. The mRNA codes for a protein comprising 265 amino acids. Amino acids 1-18 and 19-24 of the primary translation product represent the presegment and prosegment, respectively, of apo A-I. Matured rabbit apo A-I contains 241 amino acids and has a molecular mass of 27612 Da. Using pRBA-502 as a probe, a 15.5-kb genomic fragment, which contains the entire apo A-I gene, was isolated from a rabbit liver genomic library. Sequence analysis of the gene shows that the 200 base pairs of the 5' upstream flanking region of the rabbit and human apo A-I genes showed 78% sequence homology. Like the human apo A-I gene, the rabbit apo A-I gene is interrupted by three intervening sequences. Except for two nucleotides in the fourth exon, the coding sequence of the rabbit liver apo A-I gene is identical to that of pRBA-502. Our data showed that the lack of expression of apo A-I gene in rabbit liver is not due to the alternation of rabbit liver apo A-I gene sequence and suggest that the expression of apo A-I gene in rabbit liver is regulated by a trans-acting regulating element(s).  相似文献   

10.
In this study, we present clinical feature of a novel case with homozygous apolipoprotein (apo) E5.The patient was a 53-year-old Japanese woman. She was from a small island off the coast of Kagoshima Prefecture, Japan. Her parents were first degree cousins. No corneal opacification, xanthomatosis, lymphadenopathy, or hepatosplenomegaly was observed. There have been no signs of clinically overt atherosclerosis to date. Her serum total cholesterol, triglycerides (TG) and high-density lipoprotein (HDL)-cholesterol levels were 11.6, 6.1 and 1.2 mmol/l, respectively, and apo A-I, A-II, B, C-II, C-III and E levels were 121, 34.8, 269, 10.4, 25.7 and 10.3 mg/dl, respectively. Serum lipoprotein profile analyzed by agarose gel electrophoresis and differential staining revealed markedly increased cholesterol and TG in both β and preβ-migrated lipoproteins, whereas α-migrated lipoprotein showed decreased cholesterol. Her apo E isoform analyzed by isoelectric focusing (IEF) was found to be homozygous apo E5.Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis of her apo E and lipoprotein lipase (LPL) genes revealed that she had a homozygous apo E (Glu3→Lys) and heterozygous LPL variant Ser447 to Ter. Her son and daughter, both of whom had hyperlipidemia, were found to have apo E3/5 phenotype. Direct sequencing analysis of her apo E gene confirmed a homozygous one nucleotide change: G to A at nucleotide position of 2836 in the exon 3, resulting in Glu3→Lys mutation.This is the first report of lipids and lipoprotein profiles in patients with homozygous apo E5 (Glu3→Lys).  相似文献   

11.
The amino acid sequence of rabbit apolipoprotein A-I (apo A-I) has been determined by degradation and alignment of two overlapping sets of peptides obtained from tryptic and staphylococcal digestions. All of the peptides of rabbit apo A-I resulting from digestion by staphylococcal protease were isolated and sequenced except residues 33-37. A digestion with trypsin was employed to find overlapping and missing peptides. The N-terminus of rabbit apo A-I was confirmed by sequencing the intact protein up to 20 residues while the C-terminus was identified through its homology with human apo A-I. The protein contains 241 residues in its single chain. Its primary structure is highly homologous to the reported canine apo A-I (80%) and human apo A-I (78%), but exhibits less similarity with rat apo A-I (60%). Like human apo A-I, rabbit apo A-I contains very little histidine (2) and methionine (1); it does however have two residues of isoleucine. Based on a comparison of the hydrophobic-hydrophilic character of apo A-I residues with that of the two synthetic peptides that activated lecithin: cholesterol acyltransferase (Pownall et al. and Yokoyama et al.), we found that the five segments with the highest corresponding homologies on the protein are located within the N-terminal half. This suggests that the N-terminal half of apo A-I contains the major portion of regions activating lecithin: cholesterol acyltransferase.  相似文献   

12.
The pre-β HDL fraction constitutes a heterogeneous population of discoid nascent HDL particles. They transport from 1 to 25 % of total human plasma apo A-I. Pre-β HDL particles are generated de novo by interaction between ABCA1 transporters and monomolecular lipid-free apo A-I. Most probably, the binding of apo A-I to ABCA1 initiates the generation of the phospholipid-apo A-I complex which induces free cholesterol efflux. The lipid-poor nascent pre-β HDL particle associates with more lipids through exposure to the ABCG1 transporter and apo M. The maturation of pre-β HDL into the spherical α-HDL containing apo A-I is mediated by LCAT, which esterifies free cholesterol and thereby forms a hydrophobic core of the lipoprotein particle. LCAT is also a key factor in promoting the formation of the HDL particle containing apo A-I and apo A-II by fusion of the spherical α-HDL containing apo A-I and the nascent discoid HDL containing apo A-II. The plasma remodelling of mature HDL particles by lipid transfer proteins and hepatic lipase causes the dissociation of lipid-free/lipid-poor apo A-I, which can either interact with ABCA1 transporters and be incorporated back into pre-existing HDL particles, or eventually be catabolized in the kidney. The formation of pre-β HDL and the cycling of apo A-I between the pre-β and α-HDL particles are thought to be crucial mechanisms of reverse cholesterol transport and the expression of ABCA1 in macrophages may play a main role in the protection against atherosclerosis.  相似文献   

13.
14.
The stereochemical specificity of lysosomal lipase of rat liver was investigated using enantiomeric triacylglycerol analogs, sn-1-alkyl-2,3-diacylglycerol and sn-3-alkyl-1,2-diacylglycerol as substrates. Lysosomal lipase utilized both substrates with equal rates. The dependence of the activity of lysosomal lipase on the stereoconfiguration of activating acidic phospholipid was also studied. Our results showed that both sn-3-phospholipids (diphosphatidylglycerol, phosphatidylserine) and sn-1-phospholipids (bis(monoacylglycero)phosphate (BMP) were efficient activators of this enzyme and thus the stereochemical configuration of the activating phospholipid is not important. Accordingly, the rat liver lysosomal lipase lacks stereospecificity with respect to both the triacylglycerol substrate and the acidic phospholipid activator.  相似文献   

15.
16.
Rat hearts were depleted in vivo from both the heparin-releasable lipoprotein lipase and heparin-resistant tissue neutral triacylglycerol lipase activity by treatment of the animals with cycloheximide (2 mg/kg body weight), intraperitoneally injected 2.5 and 5 h prior to perfusion. The tissue acid lipase, mono- and diacylglycerol lipase activities were not affected by cycloheximide-induced inhibition of protein synthesis. Myocardial basal and glucagon-stimulated lipolysis, determined by the rate of glycerol production and release from the isolated hearts, was not significantly different in control and cycloheximide-treated rats. Tissue triacylglycerols were recovered with the highest relative specific distribution in the lysosomal fraction isolated from heart homogenates. Upon prolongation of the perfusion-duration the relative specific distribution of triacylglycerols in the lysosomal fraction decreased. In addition, the specific lysosomal triacylglycerol content (micrograms/mg protein) dropped significantly, indicating an important role of lysosomes in myocardial triacylglycerol turnover. Our data strongly suggest that the heparin-resistant neutral triacylglycerol lipase activity may not be the only determinant of endogenous lipolysis in the isolated rat heart and indicate that lipolysis may additionally be mediated by the lysosomal, acid lipase in concert with the microsomal mono-and diacylglycerol lipase.  相似文献   

17.
Gudheti MV  Lee SP  Danino D  Wrenn SP 《Biochemistry》2005,44(19):7294-7304
We report the combined effects of phospholipase C (PLC), a pronucleating factor, and apolipoprotein A-I (apo A-I), an antinucleating factor, in solutions of model bile. Results indicate that apo A-I inhibits cholesterol nucleation from unilamellar lecithin vesicles by two mechanisms. Initially, inhibition is achieved by apo A-I shielding of hydrophobic diacylglycerol (DAG) moieties so as to prevent vesicle aggregation. Protection via shielding is temporary. It is lost when the DAG/apo A-I molar ratio exceeds a critical value. Subsequently, apo A-I forms small ( approximately 5-15 nm) complexes with lecithin and cholesterol that coexist with lipid-stabilized (400-800 nm) DAG oil droplets. This microstructural transition from vesicles to complexes avoids nucleation of cholesterol crystals and is a newly discovered mechanism by which apo A-I serves as an antinucleating agent in bile. The critical value at which a microstructural transition occurs depends on binding of apo A-I and so varies with the cholesterol mole fraction of vesicles. Aggregation of small, unilamellar, egg lecithin vesicles (SUVs) with varying cholesterol composition (0-60 mol %) was monitored for a range of apo A-I concentrations (2 to 89 microg/mL). Suppression of aggregation persists so long as the DAG-to-bound-apo A-I molar ratio is less than 100. A fluorescence assay involving dansylated lecithin shows that the suppression is an indirect effect of apo A-I rather than a direct inhibition of PLC enzyme activity. The DAG-to-total apo A-I molar ratio at which suppression is lost increases with cholesterol because of differences in apo A-I binding. Above this value, a microstructural transition to DAG droplets and lecithin/cholesterol A-I complexes occurs, as evidenced by sudden increases in turbidity and size and enhancement of Forster resonance energy transfer; structures are confirmed by cryo TEM.  相似文献   

18.
Human high density lipoproteins2 (HDL2) consist of particles that contain both apolipoprotein (apo) A-I and apoA-II (A-I/A-II-HDL2) and others that contain apoA-I but are devoid of apoA-II (A-I-HDL2). When postprandial lipemia is pronounced, a fraction of HDL2 is converted into HDL2-like particles. These HDL3 exhibit lower apoA-I/apoA-II ratios than the parent HDL2, suggesting preferential conversion of A-I/A-II-HDL2 into HDL3 (J. Clin. Invest. 1984. 74: 2017-2023). Triglyceride transfer from triglyceride-rich lipoproteins to HDL2 and subsequent lipolysis by hepatic lipase are thought to mediate the conversion of HDL2 into HDL3. To understand why A-I/A-II-HDL2 are preferentially converted into HDL3, we separated postprandial HDL2 into A-I-HDL2 and A-I/A-II-HDL2 species by immunoaffinity chromatography using a monoclonal antibody for apoA-II, and determined the ability of HDL2 species i) to participate in protein-mediated lipid transfer; and ii) to interact with hepatic lipase in vitro. Triglyceride transfer from/to triglyceride-rich lipoproteins was similar for the two HDL2 species. In contrast, A-I/A-II-HDL2 were twice as effective as A-I-HDL2 in liberating hepatic lipase immobilized on HDL3-Sepharose. Lipolysis of triglycerides by hepatic lipase was 60% higher in postprandial A-I/A-II-HDL2 than in postprandial A-I-HDL2. Hydrolysis of phosphatidylcholine by hepatic lipase was threefold higher in A-II-containing HDL2 when compared with HDL2 devoid of apoA-II. The different lipolytic rates in HDL2 subspecies correlated with the size reduction of substrate lipoproteins. Reconstitution of postprandial A-I-HDL2 with apoA-II enhanced the rate of lipolysis by hepatic lipase to that observed in A-I/A-II-HDL2. We conclude that it is the interaction with hepatic lipase rather than the rate of triglyceride transfer that results in the preferred conversion of postprandial A-II-containing HDL2 into HDL3, and that apoA-II exerts a crucial role in this process.  相似文献   

19.
In this study the thermal and denaturant induced unfolding of apolipoprotein A-I (apo A-I) and the monomer form of apolipoprotein A-I(Milano) (apo A-I(M)) was followed. Dimer apo A-I(M) was reduced with dithiothreitol, which was present in the protein solutions in all experiments. Thermal denaturation is followed by differential scanning calorimetry (DSC) and far-UV and near-UV CD. Both apo A-I and monomer apo A-IM have a broad asymmetric DSC peak that could be deconvoluted into three non two-state transitions, apo A-I being more stable than the monomer apo A-IM. Estimation of melting of tertiary structure by near-UV CD is lower than that for secondary structure determined from far-UV. This together with the non two-state unfolding of the proteins observed with DSC is indicative of unfolding via a molten globular-like state. Apo A-I and monomer apo A-I(M) are equally susceptible to guanidinum chloride, half-unfolded at 1.2 M denaturant. The presence of 0.5 and 1.0 M denaturant, lower and equalize the denaturation temperatures of the proteins, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号