首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In multicellular organisms, the balance between cell division and differentiation determines organ size, and represents a central unknown in developmental biology. In Arabidopsis roots, this balance is mediated between cytokinin and auxin through a regulatory circuit converging on the IAA3/SHORT HYPOCOTYL 2 (SHY2) gene. Here, we show that crosstalk between brassinosteroids (BRs) and auxin occurs in the vascular transition zone to promote root meristem development. We found that BR increases root meristem size by up‐regulating expression of the PINFORMED 7 (PIN7) gene and down‐regulating expression of the SHY2 gene. In addition, BES1 could directly bind to the promoter regions of both PIN7 and SHY2, indicating that PIN7 and SHY2 mediate the BR‐induced growth of the root meristem by serving as direct targets of BES1. Moreover, the PIN7 overexpression and loss‐of‐function SHY2 mutant were sensitive to the effects of BR and could partially suppress the short‐root phenotypes associated with deficient BR signaling. Interestingly, BRs could inhibit the accumulation of SHY2 protein in response to cytokinin. Taken together, these findings suggest that a complex equilibrium model exists in which regulatory interactions among BRs, auxin, and cytokinin regulate optimal root growth.  相似文献   

5.
Brassinolide (BL), a plant 7-oxalactone-type steroid hormone, is one of the active brassinosteroids (BRs) that regulates plant growth and development. BL is biosynthesized from castasterone by the cytochrome P450 monooxygenase, CYP85A2. We showed that a Pichia pastoris transformant that synchronously expresses Arabidopsis P450 reductase gene ATR1 and P450 gene CYP85A2 converts teasterone and typhasterol to 7-oxateasterone and 7-oxatyphasterol, respectively. Thus, CYP85A2 catalyzes the lactonization reactions of not only castasterone but also teasterone and typhasterol. The two 2-deoxy-7-oxalactone-type BRs were identified in Arabidopsis plants. Although the reversible conversion between 7-oxateasterone and 7-oxatyphasterol was observed in vivo, no conversion of 7-oxatyphasterol to BL was observed. The biological activity of 7-oxatyphasterol toward Arabidopsis hypocotyl elongation was nearly the same as that of castasterone. These results suggest that a new BR biosynthetic pathway, a BR lactonization pathway, functions in Arabidopsis and plays an important role in regulating the concentration of active BRs, even though the metabolism of 7-oxatyphasterol to BL is still unknown.  相似文献   

6.
Phototropism is the process by which plants grow towards light in order to maximize the capture of light for photosynthesis, which is particularly important for germinating seedlings. In Arabidopsis, hypocotyl phototropism is predominantly triggered by blue light (BL), which has a profound effect on the establishment of asymmetric auxin distribution, essential for hypocotyl phototropism. Two auxin efflux transporters ATP‐binding cassette B19 (ABCB19) and PIN‐formed 3 (PIN3) are known to mediate the effect of BL on auxin distribution in the hypocotyl, but the details for how BL triggers PIN3 lateralization remain poorly understood. Here, we report a critical role for clathrin in BL‐triggered, PIN3‐mediated asymmetric auxin distribution in hypocotyl phototropism. We show that unilateral BL induces relocalization of clathrin in the hypocotyl. Loss of clathrin light chain 2 (CLC2) and CLC3 affects endocytosis and lateral distribution of PIN3 thereby impairing BL‐triggered establishment of asymmetric auxin distribution and consequently, phototropic bending. Conversely, auxin efflux inhibitors N‐1‐naphthylphthalamic acid and 2,3,5‐triiodobenzoic acid affect BL‐induced relocalization of clathrin, endocytosis and lateralization of PIN3 as well as asymmetric distribution of auxin. These results together demonstrate an important interplay between auxin and clathrin function that dynamically regulates BL‐triggered hypocotyl phototropism in Arabidopsis.  相似文献   

7.
8.
Short brassinosteroid (BR) mutants lk, lka and lkb of pea (Pisum sativum L.) were investigated by immunofluorescence microscopy to elucidate the role of brassinosteroids in cell elongation via an effect on the microtubules (MTs). This study adds to our knowledge the fact that brassinolide (BL) can cause MT realignment in azuki bean and rescue the MT organization of BR mutants in Arabidopsis. It provides novel information on both cortical and epidermal cells and presents detailed information about the ratios of all MT orientations present, ranging from transverse (perpendicular to the elongating axis) to longitudinal (parallel to the elongating axis). Experiments were conducted in vivo using intact plants with direct application of a small amount of brassinolide (BL) to the internode. Employing a BR-receptor mutant, lka, and the BR-synthesis mutants, lk and lkb, allowed the identification and isolation of any BR-induced responses in the MT cytoskeleton following BL application. Increases in growth rate were noted in all pea lines including WT following BL application. These increases were strong in the BR-synthesis mutants, but weak in the BR-receptor mutant. Immunofluorescence revealed significant differences in the average MT orientation of cortical cells of mutants versus WTs. Importantly, these mutants possessed abundant MTs, unlike the BR-deficient bul1-1 mutant in Arabidopsis. Following BL application, the epidermal and cortical cells of lk and lkb plants showed a large and significant shift in MT orientation towards more transverse, whereas lka plants showed a small and nonsignificant response in these cells. These results suggest that the BR response pathway is linked to the regulation of MT orientation.  相似文献   

9.
10.
11.
12.
Brassinosteroids (BRs) are plant steroidal hormones that regulate a wide range of developmental processes. Most BR mutants display impaired growth and responses to developmental and environmental stimuli. Here, we found a BR-deficient mutant det2-1 that displayed exceedingly short roots and agravitropic growth, which were not present in other BR mutants. By back-crossing det2-1 with the wild type, we isolated a secondary mutation named det2-1 phenotype modifier 1 (dpm1) and demonstrated that those aberrant phenotypes in the original det2-1 were independent of the BR deficiency. Phenotypic analysis showed that impaired root growth of dpm1 appeared in BR-deficient condition, but not in a normal condition. In the light condition, the mutant showed enhanced shoot growth which was suppressed in the det2-1 background. Starch granules in the columella cells of the root tip were highly accumulated and expanded in dpm1. Agravitropic roots and the expanded starch granules of dpm1 could not be recovered by BR. Taken together, these results suggest that DPM1 is required for gravitropic growth, and that its functions on root and shoot growth are BR-dependent.  相似文献   

13.
Brassinolide (BR) is a new green plant growth regulator. The present field study was conducted on two fragrant rice cultivars (i.e., Meixiangzhan-2 and Xiangyaxiangzhan) to study the effects of foliar application of BR on fragrant rice performance. At the heading stage, BR solutions at 0.05, 0.15, 0.25 and 0.50 mg L-1 were sprayed on fragrant rice at 600 liters per hectare; these treatments were named as BR1, BR2, BR3 and BR4, respectively. The treatment sprayed with distilled water was taken as a control (CK). Compared with CK, the BR2 treatment significantly enhanced the chlorophyll concentration and net photosynthetic rate for Meixiangzhan-2, and Xiangyaxiangzhan. The BR3 and BR4 treatments increased the concentrations of chlorophyll a, chlorophyll b and carotenoid, and also enhanced net photosynthetic rate by 31.91% and 40.43%, respectively. Higher grain yields were recorded in the BR2 treatment than on CK on Meixiangzhan-2, while on Xiangyaxiangzhan, the BR3 and BR4 treatments increased grain yield compared with CK. In relation to CK, higher head rice rates were recorded in the BR2 treatment for Meixiangzhan-2, and in the BR3 and BR4 treatments for Xiangyaxiangzhan. BR treatments (BR2 for Meixiangzhan-2, BR3 and BR4 for Xiangyaxiangzhan) also significantly enhanced the activities of GPX, SOD and CAT by 10.22% to 23.00%, and reduced the malonaldehyde concentration. In addition, we observed that some BR treatments (BR2 for Meixiangzhan-2, BR3 and BR4 for Xiangyaxiangzhan) decreased the grain 2-acetyl-1-pyrroline concentration of fragrant rice.  相似文献   

14.
Brassinosteroids (BRs) are growth-promoting natural substances required for normal plant growth and development. To understand the molecular mechanism of BR action, a cDNA microarray containing 1265 rice genes was analyzed for expression differences in rice lamina joint treated with brassinolide (BL). A novel BL-enhanced gene, designated OsBLE2, was identified and cloned. The full-length cDNA is 3243 bp long, encoding a predicted polypeptide of 761 amino acid residues and nine possible transmembrane regions. OsBLE2 expression was most responsive to BL in the lamina joint and leaf sheath in rice seedlings. Besides, auxin and gibberellins also increased its expression. OsBLE2 expressed more, as revealed by in situ hybridization, in vascular bundles and root primordia, where the cells are actively undergoing division, elongation, and differentiation. Transgenic rice expressing antisense OsBLE2 exhibits various degrees of repressed growth. BL could not enhance its expression in transgenic rice expressing antisense BRI1, a BR receptor, indicating that BR signaling to the enhanced expression of OsBLE2 is through BRI1. BL effect in the d1 mutant rice was much weaker than that in its wild-type control, indicating that heterotrimeric G protein may be a component of BRs signaling. These results suggest that OsBLE2 is involved in BL-regulated growth and development processes in rice.  相似文献   

15.
Brassinosteroids (BRs) are growth‐promoting plant hormones that play a crucial role in biotic stress responses. Here, we found that BR treatment increased nitric oxide (NO) accumulation, and a significant reduction of virus accumulation in Arabidopsis thaliana. However, the plants pre‐treated with NO scavenger [2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐1‐oxyl‐3‐oxide (PTIO)] or nitrate reductase (NR) inhibitor (tungstate) hardly had any NO generation and appeared to have the highest viral replication and suffer more damages. Furthermore, the antioxidant system and photosystem parameters were up‐regulated in brassinolide (BL)‐treated plants but down regulated in PTIO‐ or tungstate‐treated plants, suggesting NO may be involved in BRs‐induced virus resistance in Arabidopsis. Further evidence showed that NIA1 pathway was responsible for BR‐induced NO accumulation in Arabidopsis. These results indicated that NO participated in the BRs‐induced systemic resistance in Arabidopsis. As BL treatment could not increase NO levels in nia1 plants in comparison to nia2 plants. And nia1 mutant exhibited decreased virus resistance relative to Col‐0 or nia2 plants after BL treatment. Taken together, our study addressed that NIA1‐mediated NO biosynthesis is involved in BRs‐mediated virus resistance in A. thaliana.  相似文献   

16.
Brassinosteroids (BRs) are a group of plant hormones and the bioactive BR, brassinolide (BL), is causally implicated in promoting cell elongation and cell proliferation. In Arabidopsis, the biosynthesis of BL is essential for hypocotyl etiolation in the dark, and application of bioactive BRs can promote both hypocotyl and root elongation, although high concentrations of applied BRs result in inhibition of root elongation. A non-steroidal structure consisting of four stereoisomers was designed to contain subunits bearing key functional groups mimicking those of BL. The bioactivity of each of these individual stereoisomers was tested using the Arabidopsis thaliana det2-1 mutant line, which is deficient in BL, and thus does not etiolate in the dark. Application of BL at each of 0.1, 1.0, and 10.0 µM promotes hypocotyl elongation in dark-grown det2-1 plants while simultaneously inhibiting elongation of their primary root. In contrast, the mimetic structures, when applied to dark-grown det2-1 plants, promote hypocotyl elongation without negatively affecting primary root elongation. In fact, two of the mimetic structures, applied at a 10 µM concentration, significantly promoted both hypocotyl and root elongation. Correlation of this contrasting behavior with the configurations of the hydroxylated stereocenters of the mimetics is described. This is the first example of a non-steroidal BL mimetic where the biological activities of individual stereoisomers were tested and compared.  相似文献   

17.
Benomyl-resistant (BR) and wild-type (WT) strains of Fusarium lateritium were examined for their tolerance to benomyl on potato dextrose agar (PDA) containing benomyl and control of the Eutypa lata in grapevine bioassays. The WT strain grew on PDA containing 1 μg/ml benomyl at 13, 26 and 29°C. The BR strain grew on PDA containing 10 μg/ml benomyl at 4°C, on PDA containing 100 μg/ml benomyl at 29°C, and on PDA containing 1000 μg/ml benomyl at 13 and 26°C. The BR strain was also able to colonize grapevine segments and control E. lata in the presence of 1000 μg/ml benomyl. Both strains were amenable to production via liquid fermentation and both achieved 100% control of E. lata in grapevine bioassays. Neither the duration of fermentation nor incubation temperature during grapevine bioassays influenced the efficacy of either strain against E. lata. The results suggest that application of BR F. lateritium alone or in combination with benomyl may provide good control of E. lata. Journal of Industrial Microbiology & Biotechnology (2001) 26, 151–155. Received 22 December 1999/ Accepted in revised form 20 October 2000  相似文献   

18.
19.
The roles of phytochrome A (phyA), phytochrome B (phyB) and a putative blue-light (BL) photoreceptor (HY4) in the control of hypocotyl growth by natural radiation were investigated using phyA, phyB and hy4 mutants of Arabidopsis thaliana. Full sunlight inhibited hypocotyl growth to a larger extent in wild-type (WT) than in phyA, phyB and, particularly, hy4 seedlings. In WT seedlings, hypocotyl growth was promoted by selectively lowering BL irradiance, lowering red-light (R) plus far-red-light (FR) irradiance or lowering the R/FR ratio (which was achieved either by increasing FR or by reducing R). The effects of lowering BL were reduced in hy4 and exaggerated in phyA seedlings. The effects of lowering R+FR were reduced in phyA and exaggerated in hy4 seedlings. Neither phyB nor hy4 mutants responded to low R/FR ratios. Neighbouring plants reflecting FR without shading caused subtle reductions of the R/FR ratio. This signal promoted hypocotyl growth in WT but not in phyA, phyB or hy4 seedlings. Intermediate canopy shade produced similar effects in all genotypes. Under deep shade, de-etiolation was severely impaired in phyA seedlings, which died prematurely. Thus, the FR ‘high-irradiance reaction’ mediated by phyA could be important for seedling survival under dense canopies.  相似文献   

20.
Microarray analysis of brassinosteroid-regulated genes in Arabidopsis   总被引:14,自引:0,他引:14  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号