首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepta-O-acetyl-2-0-β-l-quinovopyranosyl-α-d-glucose (VI) and hepta-O-acetyl-2-O-α-l-quinovopyranosyl-β-d-gIucose (VIII) were prepared by the coupling of 2,3,4-tri-O-acetyl-α-l-quinovopyranosyl bromide (IV) with l,3,4,6-tetra-O-acetyl-α-D-glucose (V) in the presence of mercuric cyanide and mercuric bromide in absolute acetonitrile.

Similarly, hepta-O-acetyW-O-α-l-quinovopyranosyl-α-d-galactose (X) and hepta-O-acetyl-2-O-β-L-quinovopyranosyl-α-d-galactose (XI) were prepared by the reaction of IV with 1,3,4,6-tetra-O-acetyl-α-d-galactose (IX).

Removal of the protecting groups of VI, VIII, X and XI afforded the corresponding disaccharides. On treatment with hydrogen bromide, VI, VIII, X and XI gave the corresponding acetobromo derivatives.  相似文献   

2.
Fractionation of sorbitol metabolites in the culture liquid of Gluconobacter melanogenus IFO 3292 was examined by column chromatographic techniques. Ion exchange column chromatography of the culture supernatant allowed to divide the components of the metabolites into Fractions I, II, III and IV. Paperelectrophoretic and paperchromatographic analyses of these fractions revealed that Fractions I, II, III and IV contained neutral sugar, hexonic acids, 5-ketohexonic acid and 2-ketohexonic acids, respectively.

The neutral sugar in Fraction I, the 5-ketohexonic acid in Fraction III and the 2-ketohexonic acids in Fraction IV were isolated and determined to be l-sorbose, 5-keto-d- mannonic, 2-keto-d-gluconic and 2-keto-l-gulonic acids, respectively, from their physical properties. In Fraction II were contained two different hexonic acids, one of which was identified to be l-idonic acid by the aid of substrate specificity of a hexonic acid dehydrogenase of Pseudomonas aeruginosa, and the other was determined to be d-mannonic acid as the phenylhydrazide derivative.  相似文献   

3.
Six strains of bacteria belonging to Vibrio and Pseudomonas were selected as good producers of L-DOPA from L-tyrosine out of various bacteria. The condition for the formation of L-DOPA by Vibrio tyrosinaticus ATCC 19378 was examined and the following results were obtained. (1) Intermittent addition of L-tyrosine in small portions gave higher titer of L-DOPA than single addition of L-tyrosine. (2) Higher amount of L-DOPA was produced in stationary phase of growth than in logarithmic phase. (3) Addition of antioxidant, chelating agent or reductant such as L-ascorbic acid, araboascorbic acid, hydrazine, citric acid and 5-ketofructose increased the amount of L-DOPA formed. (4) L-Tyrosine derivatives such as N-acetyl-L-tyrosine amide, N-acetyl-L-tyrosine, L-tyrosine amide, L-tyrosine methyl ester and L-tyrosine benzyl ester were converted to the corresponding L-DOPA derivatives.

In the selected condition about 4 mg/ml of L-DOPA was produced from 4.3 mg/ml of L-tyrosine.  相似文献   

4.
The mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 was examined by investigating the properties of the enzymes involved in the hydrolysis of dl-5-substituted hydantoins. The enzymatic production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 involved the following two successive reactions; the d-isomer specific hydrolysis, i.e., the ring opening of d-5-substituted hydantoins to d-form N-carbamyl amino acids by an enzyme, d-hydantoin hydrolase (d-HYD hydrolase), followed by the d-isomer specific hydrolysis, i.e., the cleavage of N-carbamyl-d-amino acids to d-amino acids by an enzyme, N-carbamyl-d-amino acid hydrolase (d-NCA hydrolase).

l-5-Substituted hydantoins not hydrolyzed by d-HYD hydrolase were converted to d-form 5- substituted hydantoins through spontaneous racemization under the enzymatic reaction conditions.

It was proposed that almost all of the dl-5-substituted hydantoins were stoichiometrically and directly converted to the corresponding d-amino acids through the successive reactions of d-HYD hydrolase and d-NCA hydrolase in parrallel with the spontaneous racemization of l-5-substituted hydantoins to those of dl-form.  相似文献   

5.
A growth factor (TJF) for a malo-lactic fermentation bacterium has been isolated from tomato juice, and found to be a β-glucoside. The NMR spectra of TJF and its acetate revealed that the glucosyl residue linked to the hydroxyl group at C-2′ or C-4′ of d- or l-pantothenic acid moiety. Then, 2′-O-(β-d-glucopyranosyl)-dl-pantothenic acid (I), 4′-O-(β-d-glucopyranosyl)-dl-pantothenic acid (II) and 4′-O-(β-d-glucopyranosyl)-d(R)-pantothenic acid (II-a) were synthesized, and Il-a and 4′-O-(β-d-glucopyranosyl)-l-pantothenic acid (II-b) were obtained by the optical resolution of the acetate of II. Among the above compounds, II-a was identical with natural TJF regarding to the biological activity, NMR and ORD spectra, and thin-layer chromatography.  相似文献   

6.
Growth of Brevibacterium flavum FA-1-30 and FA-3-115, L-lysine producers derived from Br. flavum No. 2247 as S-(2-aminoethyl)-L-cysteine (AEC) resistant mutants, was inhibited by α-amino-β-hydroxyvaleric acid (AHV), and this inhibition was reversed by L-threonine. All the tested AHV resistant mutants derived from FA-1-30 accumulated more than 4 g/liter of L-threonine in media containing 10% glucose, and the best producer, FAB-44, selected on a medium containing 5 mg/ml of AHV produced about 15 g/liter of L-threonine. Many of AHV resistant mutants selected on a medium containing 2 mg/ml of AHV accumulated L-lysine as well as L-threonine, AHV resistant mutants derived from FA-3-115 produced 10.7 g/liter of L-threonine maximally. AEC resistant mutants derived from strains BB–82 and BB–69, which were L-threonine producers derived from Br. flavum No. 2247 as AHV resistant mutants, did not produce L-threonine more than the parental strains, and moreover, many of them did not accumulate L-threonine but L-lysine. Homoserine dehydrogenases of crude extracts from L-threonine producing AHV resistant mutants derived from FA–1–30 and FA–3–115 were insensitive to the inhibition by L-threonine, and those of L-threonine and L-lysine producing AHV resistant mutants from FA–1–30 were partially sensitive.

Correlation between L-threonine or L-lysine production and regulations of enzymatic activities of the mutants was discussed.  相似文献   

7.
We identified two compounds that demonstrated 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity from cultures of Lactobacillus plantarum. Spectroscopic analyses proved these compounds to be L-3-(4-hydroxyphenyl) lactic acid (HPLA) and L-indole-3-lactic acid (ILA). The respective EC50 values for HPLA and ILA were 36.6 ± 4.3 mM and 13.4 ± 1.0 mM.  相似文献   

8.
Kinetic parameters of d-amino acid oxidase from R. gracilis (DAAO) towards d-2-naphthyl alanine (d-2-NAla) and of l-aspartate amino transferase (l-AAT) from Escherichia coli towards 2-naphthyl pyruvate (2-NPA) were measured. The two enzymes were then combined in a one-pot reaction in which DAAO was used to generate 2-NPA which was the substrate of l-AAT in the presence of cysteine sulphinic acid (CSA) as an amino donor. The combined reactions afforded enantiomerically pure l-2-NAla in almost quantitative yield. The extremely low water solubility of 2-NAla can be partially overcome by running the biotransformation in suspension with higher formal concentration. In these conditions multiple enzyme additions are required.  相似文献   

9.
Four isomeric glucosyl hypoxanthines, bis-1,9-(β-d-glucopyranosyl) hypoxanthine (I), bis-1,7-(β-d-glucopyranosyl) hypoxanthine (II), 7-β-d-glucopyranosyl hypoxanthine (III) and 9-β-d-glucopyranosyl hypoxanthine (IV) were synthesized simultaneously by using the so- called Davoll-Lowy’s method. Their synthetic procedures and structural evidences are presented.  相似文献   

10.
Naringenin-7-β-maltoside (I), -7-β-cellobioside (II), -7-β-lactoside (III), -7-β-melibioside (IV) and hesperetin-7-β-[d-galactosyl (α 1→2) d-glucoside] (V), -7-β-[d-glucosyl (β 1→2) d-galactoside] (VI) and -7-β-melibioside (VII) were prepared by the coupling of naringenin or hesperetin with the acetobromo derivatives of appropriate disaccharides followed by removal of the protecting acetyl groups.

Narigenindihydrochalcone-4′-β-kojibioside (VIII), -4′-β-maltoside (IX), -4′-β-cellobioside (X), -4′-β-lactoside (XI), -4′-β-melibioside (XII) and hesperetindihydrochalcone-4′-β-[d-galactosyl (α 1→2) d-glucoside] (XIII), -4′-β-sophoroside (XIV) and -4′-β-melibioside (XV) were synthesized by catalytic reduction of the appropriate flavanone-7-β-glycosides.

Among the compounds synthesized, IX and X are 4 and 8 times as sweet as sucrose on the basis of percentage concentration, respectively, but the others are tasteless.  相似文献   

11.
A number of bacterial strains from type culture collections and natural sources were examined in their metabolic characteristics toward sorbitol and l-sorbose.

Paper chromatographic analyses of sorbitol and l-sorbose metabolites obtained from the cultures of various bacteria revealed that the organisms producing 2-keto-l-gulonic acid from sorbitol were merely found in the genera Acetobacter, Gluconobacter and Pseudomonas, whereas those producing the acid from l-sorbose were distributed in the twelve genera of bacteria: Acetobacter, Alcaligenes, Aerobacter, Azotobacter, Bacillus, Escherichia, Gluconobacter, Klebsiella, Micrococcus, Pseudomonas, Serratia and Xanthomonas.

G. melanogenus, which was characterized by excellent production of 2-keto-l-gulonic acid from sorbitol, also formed several other sugars and sugar acids as the sorbitol metabolites. These compounds were identified to be d-fructose, l-sorbose, d-mannonic acid, L-idonic acid, 2-keto-d-gluconic acid and 5-keto-d-mannonic acid, respectively, by means of two-dimensional paper chromatography.

Bacteria producing 2-keto-l-gulonic acid from sorbitol were usually isolated from fruits but not from soil.  相似文献   

12.
Seven optical active 2-benzylamino alcohols were synthesized by reduction of N-benzoyl derivatives of L-alanine, L-valine, L-leucine, L-phenylalanine, L-aspartic acid, L-glutamic acid and L-lysine and applied for the resolution of (±)-trans-chrysanthemic acid. d-trans-Chrys-anthemic acid was obtained by resolution via the salts of 2-benzylamino alcohols derived from L-valine and L-leucine, while (?)-trans-chrysanthemic acid was prepared through the salts of the amino alcohols derived from L-alanine and L-phenylalanine.  相似文献   

13.
A pectin isolated from tobacco midrib contained residues of d-galacturonic acid (83.7%), L-rhamnose (2.2%), l-arabinose (2.4%) and d-galactose (11.2%) and small amounts of d-xylose and d-glucose. Methylation analysis of the pectin gave 2, 3, 5-tri- and 2, 3-di-O-methyl-l-arabinose, 3, 4-di- and 3-O-methyl-l-rhamnose and 2, 3, 6-tri-O-methyl-d-galactose. Reduction with lithium aluminum hydride of the permethylated pectin gave mainly 2, 3-di-O-methyl-d-galactose and the above methylated sugars. Partial acid hydrolysis gave homologous series of β-(1 → 4)-linked oligosaccharides up to pentaose of d-galactopyranosyl residues, and 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, and di- and tri-saccharides of α-(1 → 4)-linked d-galactopyranosyluronic acid residues.

These results suggest that the tobacco pectin has a backbone consisting of α-(1 → 4)-linked d-galactopyranosyluronic acid residues which is interspersed with 2-linked l-rhamnopyranosyl residues. Some of the l-rhamnopyranosyl residues carry substituents on C-4. The pectin has long chain moieties of β-(1 → 4)-linked d-galactopyranosy] residues.  相似文献   

14.
An X-ray crystal structural analysis revealed that (2S,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-L-isoleucine; Ac-L-Ile) and (2R,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-D-alloisoleucine; Ac-D-aIle) formed a molecular compound containing one Ac-L-Ile molecule and one Ac-D-aIle molecule as an unsymmetrical unit. This molecular compound is packed with strong hydrogen bonds forming homogeneous chains consisting of Ac-L-Ile molecules or Ac-D-aIle molecules and weak hydrogen bonds connecting these homogeneous chains in a fashion similar to that observed for Ac-L-Ile and Ac-D-aIle. Recrystallization of an approximately 1:1 mixture of Ac-L-Ile and Ac-D-aIle from water gave an equimolar molecular compound due to its lower solubility than that of Ac-D-aIle or especially Ac-L-Ile. The results suggest that the equimolar mixture of Ac-L-Ile and Ac-D-aIle could be obtained from an Ac-L-Ile-excess mixture by recystallization from water.  相似文献   

15.
Isoleucine (Ile) is a precursor for the biosynthesis of anteiso-fatty acids in rat skin, and among the four possible stereoisomers of Ile, l-Ile, and l-allo-Ile were selectively used for biosynthesis of anteiso-fatty acids. This study examined the optical rotation of anteiso-fatty acid derived from dl-Ile to ascertain its stereo-configuration. Specific rotation of anteiso-fatty acid derived from dl-Ile favorably compared with that derived from l-Ile, suggesting he selective biosynthesis of the (S)-enantiomer of anteiso-fatty acid n rat skin.  相似文献   

16.
Studies were conducted on the degradation of N-lauroyl-L-valine by type cultured bacteria. Many strains could utilize sodium N-lauroyl-L-valinate as carbon and nitrogen sources for their growth. Metabolism of N-lauroyl-L-valine was investigated in detail using Ps. aeruginosa AJ2116. Laurie acid was identified by gas chromatography suggesting cleavage of N-acyl linkage in N-lauroyl-L-valine.

Laurie acid might be metabolized to capric acid (C10) and caprylic acid (C8) becuase the accumulated substances gave nearly identical peaks with those of authentic fatty acids on gas chromatograms. The experiment using N-lauroyl-L-valine (14C) indicated that 14CO2 was produced as a final product. Valine was not detected because it might be metabolized very rapidly immediately after its release.

It was supposed that the enzymes or enzyme systems degrading N-lauroyl-L-valine might be constitutive from the experiment using two kinds of cells grown in the medium containing N-lauroyl-L-valine or nutrient broth.  相似文献   

17.
An electro-energizing fermentation (E-E F) method has been developed. In this method, a direct electrical current is applied to a microbial culture to accelerate the reductive metabolism of microorganisms or to impart profitable effects to microbial cells. This E-E F method was applied to l-glutamic acid fermentation by Brevibacterium flavum No. 2247. When glucose was used as a substrate, the addition of 0.01 mm neutral red (NR), redox dye (electron carrier), to the fermentation broth at the beginning of cultivation was effective for l-glutamate (l-Glu) production. A direct current of 200~300 μA/cm2 at 1.5 V was applied through out the cultivation of this bacterium. This resulted in about a 10% increase in yield of l-Glu.  相似文献   

18.
transglucosylation by a β-d-glucosidase from cycad seeds. These azoxyglycosides, named neocycasin H, I, and J, were identified as O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(l→3)-O-β-d-glucopyranoside of methylazoxymethanol (MAM), O-β-d-glucopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, and O-β-d-glucopyranosyl-(1→3)-[O-β-d-xylopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, respectively. On the basis of their structures, the mechanism of the formation of these neocycasins is also discussed.  相似文献   

19.
Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.  相似文献   

20.
Isoleucine (Ile) is a precursor for the biosynthesis of anteiso-fatty acids in rat skin, and among the four possible stereoisomers of lie, l-Ile, and l-allo-Ile were selectively used for biosynthesis of anteiso-fatty acids. This study examined the optical rotation of anteiso-fatty acid derived from dl-Ile to ascertain its stereo-configuration. Specific rotation of anteiso-fatty acid derived from dl-Ile favorably compared with that derived from l-Ile, suggesting the selective biosynthesis of the (S)-enantiomer of anteiso-fatty acid in rat skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号