首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Two new alcoholic aroma precursors, cis- and trans-linalool 3,7-oxides 6-O-β-D-apiofuranosyl-β-D-glucopyranosides (1 and 2), as well as two already known compounds, (Z)-3-hexenyl β-D-glucopyranoside (3) and methyl salicylate 6-O-β-D-xylopyranosyl-β-D-glucopyranoside (β-primeveroside: 4), and another new monoterpendiol glycoside, 8-hydroxygeranyl β-primeveroside (5) have recently been isolated as aroma precursors in tea leaves (Camellia sinensis var. sinensis cv. Maoxie) ready for oolong tea processing.  相似文献   

2.
The electrophoretically homogeneous glucomannan isolated from konjac flour was composed of d-glucose and d-mannose residues in the approximate ratio of 1: 1.6. Controlled acid hydrolysis gave 4-O-β-d-mannopyranosyl-d-mannose, 4-O-β-d-mannopyranosyl-d-glucoseT 4-O-β-d-glucopyranosyl-d-glucose(cellobiose), 4-O-β-d-glucopyranosyl-d-mannose(epicellobiose), O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-glucopyranosyl- (1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-mannopyranosyl-(1→4)-O-β-d-glucopy- ranosyl-(1→4)-d-mannose and O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-d-mannose.  相似文献   

3.
A new glucuronide saponin (1) was isolated as its methyl ester (2) from the leaves of Camellia sinensis var. sinensis. On the basis of its spectral data and the results of chemical degradation, the structure was elucidated to be 3-O-1{β-d-galactopyranosyl(l → 2)-[β-d-xylopyranosyl(1 → 2)-α-l-arabinopyranosyl(1 → 3)]-β-d-glucuronopyranosyl}-21-O-cinnamoyl-16,22–di-O-acetylbarringtogenol C.  相似文献   

4.
A glucomannan isolated from konjac flour was hydrolyzed with commercially available crude and purified cellulases. The following oligosaccharides were isolated from the hydrolyzate and identified: (a) 4-O-β-d-mannopyranosyl-d-monnose (b) 4-O-β-d-mannopyranosyl-d-glucose (c) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose (d) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (e) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose (f) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (g) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (h) 4-O-β-d-glucopyranosyl-d-glucose(cellobiose) (i) 4-O-β-d-glucopyranosyl-d-mannose (epicellobiose) (j) O-β-d-glucopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose. Of these saccharides, (h), (i) and (j) were isolated from the hydrolyzate by purified cellulase, while (g) was isolated from the hydrolyzate by crude cellulase. The others were all present in the hydrolyzates both by crude and by purified cellulases.  相似文献   

5.
New glycosidic aroma precursors (1 and 2) of the main volatile constituents, trans- and cis-linalool 3,6-oxides (linalool oxides I and II), were isolated from oolong tea leaves (Camellia sinensis var. sinensis cv. Maoxie). The isolation was guided by an enzymatic hydrolysis with acetone powder prepared from fresh tea leaves (cv. Yabukita) followed by GC or GC-MS analyses. Chromatographic purification of hot water extracts of the tea leaves on active charcoal, Amberlite XAD-2, and Sephadex LH-20 columns as well as HPLC gave two new glycosides, trans- and cis-linalool 3,6-oxide 6-O-β-d-xylopyranosyl-β-d-glucopyra-nosides (1 and 2).  相似文献   

6.
The glucomannan isolated from larch holocellulose was hydrolyzed by a purified endo-d-β-mannanase. The products were fractionated by gel filtration on a Polyacrylamide gel in water and partition chromatography on ion exchange resins in 80% ethanol. The following oligosaccharides were isolated and identified: (a) 4-O-β-d-Manp-d-Man, (b) 4-O-β-d-Glcp-d-Man, (c) 4-O-β-d-Glcp-d-Glc, (d) O-β-d-Manp-(1 →4)-O-β-d-Manp-(1 →4)-d-Man, (e) O-β-dGlcp-(l →4)-O-β-d-Manp-(l →4)-d-Man, (f) O-β-d-Manp-(l →4)-Oβ-d-Glcp-(l →4)-d-Man, (g) O-β-d-Manp-(l →4)-O-[α-d-Galp-(l →6)]-d-Man, (h) O-β-d-Manp-(l →4)-O-β-d-Manp-(l →4)-O-β-d-Manp-(l →4)-d-Man, and (i) O-β-d-Glcp-(1 →4)-O-β-d-Manp-(1 →4)-O-β-d-Manp-(1 →4)-d-Man.  相似文献   

7.
transglucosylation by a β-d-glucosidase from cycad seeds. These azoxyglycosides, named neocycasin H, I, and J, were identified as O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(l→3)-O-β-d-glucopyranoside of methylazoxymethanol (MAM), O-β-d-glucopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, and O-β-d-glucopyranosyl-(1→3)-[O-β-d-xylopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, respectively. On the basis of their structures, the mechanism of the formation of these neocycasins is also discussed.  相似文献   

8.
Two β-d-glucosidases were purified to homogeneity from Bifidobacterium breve 203: one ( β-d-glucosidase I; molecular weight, 96,000) showed reactivity toward p-nitrophenyl (p-NP) β-d-fucoside, 74% of that to p-NP β-d-glucoside, and the other ( β-dglucosidase II; molecular weight, 450,000) did not. They also differed in their thermal and pH stabilities. Laminaribiose, cellobiose and gentiobiose were hydrolyzed by β-d-glucosidase I, with 53%, 34% and 3% of the reactivity in the case of p-NP β-d-glucoside, and by β-dglucosidase II, with 53%, 6% and 107% of the reactivity. The reaction of β-dglucosidase I with p-NP β-dfucoside was enhanced by the addition of glucose and other monosaccharides to the reaction mixture, whereas that with p-NP β-dglucoside was not affected. The activity of β-dglucosidase II with p-NP β-dglucoside was inhibited by glucose.  相似文献   

9.
Rubusoside derivatives by transgalactosylation of various β-galactosidases were isolated and their structures were analyzed. Escherichia coli β-galactosidase produced mainly 13-O-β-d-glucosyl-19-O-[β-d-galactosyl-(1→6)-β-d-glucosyl]-steviol (RGal-2). Bacillus circulans β-galactosidase produced mainly 13-O-β-d-glucosyl-19-O-[β-d-galactosyl-(1→4)-β-d-glucosyl]-steviol (RGal-1a) in the early stage of the reaction and then produced 13-O-[β-d-galactosyl-(1→4)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (RGal-1b). With decreasing the amount of these products (RGal-1a and RGal-1b), RGal-2 was produced.  相似文献   

10.
During an examination of components contributing to the bitter taste of asparagus bottom cut (Asparagus officinalis L.), two new furostanol saponins were isolated from roots extractives. Their chemical structures were established as 5β-furostane-3β,22,26 triol-3-O-β-d-glucopyranosyl (1→2)-β-d-glucopyranoside 26-O-β-d-glucopyranoside and 5β-furostane-3β,22,26 triol-3-O-β-d-glucopyranosyl (1→2) [β-d-xylopyranoxyl (1→4)]-β-d-glucopyranoside 26-O-β-d-glucopyranoside respectively.  相似文献   

11.
Acremonium sp. 15 a fungus isolated from soil, produces an extracellular enzyme system degrading cyclic (1→2)-β-d-glucan. This enzyme was found to be a mixture of endo-(1→2)-β-d-glucanase and β-d-glucosidase. The (1→2)-β-d-glucanase was purified to homogeneity shown by disc-electrophoresis after SP-Sephadex column chromatography, Sephadex G-75 gel filtration, and rechromatography on SP-Sephadex. The molecular weight of the enzyme was 3.6 × 104 by SDS-polyacrylamide gel electrophoresis. The isoelectric point of the enzyme was pH 9.6. The enzyme was most active at pH 4.0—4.5, and stable up to 40°C in 20 mm acetate buffer (pH 5.0) for 2 hr of incubation. This enzyme hydrolyzed only (l→2)-β-d-glucan and did not hydrolyze laminaran, curdlan, or CM-cellulose. The hydrolysis products from cyclic (1→2)-β-d-glucan were mainly sophorose.

The β-d-glucosidase was purified about 4000-fold. The rate of hydrolysis of the substrates by this β-d-glucosidase decreased in the following order: β-nitrophenyl-β-d-glucoside, sophorose, phenyl-β-d-glucoside, laminaribiose, and salicin. This enzyme has strong transfer action even at the low concentration of 0.75 mm substrate.  相似文献   

12.
The chemical structure of cell wall β-d-glucans as well as the activities of lytic enzymes such as β-1,3-d-glucanase and β-1,6-d-glucanase changed during the growth of Neurospora crassa.

A dramatic change in the cell wall β-d-glucan structure was observed between cells of the middle logarithmic phase and ones of the late logarithmic phase. The ratio of 1,3-linked glucose residues to non reducing terminal glucose residues decreased from 85 to 55 and the ratio of gentiobiose as a hydrolysis product with exo-β-1,3-d-glucanase increased significantly between the two phases.

Two prominent peaks of β-1,3-d-glucanase as well as the β-1,6-d-glucanase activities appeared in the culture filtrate at different growth stages, the early logarithmic phase and the stationary phase. In the cell wall, β-d-glucosidase activity instead of the β-l,6-d-glucanase and β-1,3-d-glucanase activities was observed in the late logarithmic phase.  相似文献   

13.
Partial acid hydrolysis of Saccharomyces cerevisiae mannan gave 2-O-α-d-Manp-d-Man (1), 3-O-α-d-Manp-d-Man (2), 6-O-α-d-Manp-d-Man (3), O-α-d Manp-(1→2)O-α-d-Manp-(1→2)-d-Man (4), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-d-Man (5), O-α-d Manp-(1→6)-6-O-α-d-Manp-(1→6)-d-Man (6), O-α-d Manp-(1→2)-O-α-d-Manp-(1→2)-6-O-α-d-Manp-(1→6)-d-Man (7), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-O-α-d-Manp-(1→6)-d-Man (8), and O-α-d-Manp-(1→6)-O-[α-d-Manp-(1→2)]-O-α-d-Manp-(1→6)-d-Man (9).  相似文献   

14.
A growth factor (TJF) for a malo-lactic fermentation bacterium has been isolated from tomato juice, and found to be a β-glucoside. The NMR spectra of TJF and its acetate revealed that the glucosyl residue linked to the hydroxyl group at C-2′ or C-4′ of d- or l-pantothenic acid moiety. Then, 2′-O-(β-d-glucopyranosyl)-dl-pantothenic acid (I), 4′-O-(β-d-glucopyranosyl)-dl-pantothenic acid (II) and 4′-O-(β-d-glucopyranosyl)-d(R)-pantothenic acid (II-a) were synthesized, and Il-a and 4′-O-(β-d-glucopyranosyl)-l-pantothenic acid (II-b) were obtained by the optical resolution of the acetate of II. Among the above compounds, II-a was identical with natural TJF regarding to the biological activity, NMR and ORD spectra, and thin-layer chromatography.  相似文献   

15.
A new procedure which involves 1-trichloroacetyl sugars as the starting material has been developed for the synthesis of purine nucleosides. 7-β-d-Glucopyranosyl-, 7-β-d-xylopyranosyl-, 7-β-d-ribopyranosyl-theophylline, 9-(tetra-O-acetyl-β-d-glucopyranosyl)-2,6,8-trichloropurine and 9-β-d-glucopyranosyl adenine were prepared in good yields by the reaction in fusion of purine bases with 1-trichloroacetyl sugars, using zinc chloride, p-toluenesulfonic acid, or ethyl polyphosphate as catalyst. 9-d-Ribofuranosyl adenine was also prepared by the same procedures, although the anomeric configuration of the compound is not yet definite. The effect of catalysts on the yields of purine nucleosides is discussed.  相似文献   

16.
The acylated, amidated and esterified derivatives of N-acetylglucosaminyl-α(1 → 4)-N-acetylmuramyl tri- and tetrapeptide were synthesized and examined as to their protective effect on pseudomonal infection in the mouse and pyrogenicity in the rabbit. Modifications of the terminal end function of the peptide moieties in their molecules caused enhancement of resistance to pseudomonal infection and reduction of pyrogenicity. Among the compounds tested, sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide and sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide-(l)-d-alanine were found to be advantageous and conceivably worthwhile for further investigation as immunobiologically active compounds.  相似文献   

17.
A β-gIucoside of d-pantothenic acid was formed from d-pantothenic acid and β-glucosyl donors such as cellobiose, phenyl-β-d-glucoside, salicin, and 4-methylumbelliferyl-β-d-glucoside and naphthol AS-BI-β-d-glucoside by various β-glucosidases, i.e., almond β-glucosidase, cellulase type II and III, naringinase, and hesperiginase. The compound was isolated from a reaction mixture of almond β-glucosidase by treatment with active charcoal, Amberlite CG–50, and DEAH-cellulose column chromatography, paper chromatography, and Sephadex G-IO gel filtration. Then, the compound was characterized as 4′-O-(β-d-glucopyranosyl)-d-pantothenic acid by various analytical methods including bioassay, paper chromatography, NMR and specific optical rotation. The microbiological activities of the compound were also determined.  相似文献   

18.
The substrate specificity of α-d-xylosidase from Bacillus sp. No. 693–1 was further investigated. The enzyme hydrolyzed α-1,2-, α-1,3-, and α-1,4-xylobioses. It also acted on some heterooligosaccharides such as O-α-d-xylopyranosyl-(1→6)-d-glucopyranose, O-α-d-xylopyranosyl-(1→6)-O-β-d-glucopyranosyl-(1→4)-d-glucopyranose, O-α- d-xylopyranosyl-(1→6)-O-d-glucopyranosyl-(1→4)-O-[α-d-xylopyranosyl-(1→6)]-d-glucopyranose, and O-α-d-xylopyranosyl-(1→3)-l-arabinopyranose. The enzyme was unable to hydrolyze tamarinde polysaccharides although it could hydrolyze low molecular weight substrates with similar linkages.  相似文献   

19.
To investigate the substrate specificity of α-l-rhamnosidase from Aspergillus niger, the following seven substrates were synthesized: methyl 3-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (1), methyl 3-O-α-l-rhamnopyranosyl-α-l-xylopyranoside (2), methyl 3-0-α-l-rhamnopyranosyl-α-l-rhamnopyranoside (3), methyl 4-0-α-l-rhamnopyranosyl-α-d-galactopyranoside (4), methyl 4-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (5), methyl 4-0-α-l-rhamnopyra-nosyl-α-d-xylopyranoside (6), and 6-0-β-l-rhamnopyranosyl-d-mannopyranose (7). Compounds 1~6 were well-hydrolyzed by the crude enzyme, but 7 was unaffected.  相似文献   

20.
To investigate the substrate specificity of β-l-rhamnosidase, the following β-l-rhamnopyranosides were synthesized: 1-(β-l-rhamnopyranosyl)-dl-glycerol (1), methyl β-l-rhamnopyranoside (2), methyl 2-O-(β-l-rhamnopyranosyl)-β-d-glucopyranoside (3) and methyl 2-O-β(β-l-rhamnopyranosyl)-α-l-arabinopyranoside (4). The synthesis of 3 was performed using l-quinovose with neighboring group participation, which lead stereoselectively to the β-l-quinovoside. The 2-OH of the l-quinovo-unit was selectively deblocked, oxidized to the keto group, and then stereoselectively reduced, whereby 3 was produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号