首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel Gram-negative and rod-shaped bacterium, designated N8T, was isolated from tidal flat sediment. Phylogenetic analysis based on 16S rRNA gene sequences showed that N8T strain is associated with the family Phyllobacteriaceae: two uncultured clones (98.4 and 99.8% 16S rRNA gene sequence similarity) and the genus Mesorhizobium (≤97.0%). The novel strain formed a separate clade with uncultured clones in the phylogenetic tree based on 16S rRNA gene sequences. Cellular fatty acid profiles predominately comprised C18:1 ω7c and C19:0 cyclo ω8c. The major isoprenoid quinone is ubiquinone-10 and genomic DNA G+C content is 53.4 mol%. The polyphasic taxonomic study indicates that the novel strain N8T represents a novel species of the new genus in the family Phyllobacteriaceae, named Aliihoeflea aestuarii. The type strain is N8T (= KCTC 22052T= JCM 15118T= DSM 19536T).  相似文献   

2.

For extending the current collection of axenic cultures of planctomycetes, we describe in this study the isolation and characterisation of strain Pan265T obtained from a red biofilm in the hydrothermal vent system close to the Lipari Islands in the Tyrrhenian Sea, north of Sicily, Italy. The strain forms light pink colonies on solid medium and grows as a viscous colloid in liquid culture, likely as the result of formation of a dense extracellular matrix observed during electron microscopy. Cells of the novel isolate are spherical, motile and divide by binary fission. Strain Pan265T is mesophilic (temperature optimum 30–33 °C), neutrophilic (pH optimum 7.0–8.0), aerobic and heterotrophic. The strain has a genome size of 3.49 Mb and a DNA G?+?C content of 63.9%. Phylogenetically, the strain belongs to the family Phycisphaeraceae, order Phycisphaerales, class Phycisphaerae. Our polyphasic analysis supports the delineation of strain Pan265T from the known genera in this family. Therefore, we conclude to assign strain Pan265T to a novel species within a novel genus, for which we propose the name Mucisphaera calidilacus gen. nov., sp. nov. The novel species is the type species of the novel genus and is represented by strain Pan265T (=?DSM 100697T?=?CECT 30425T) as type strain.

  相似文献   

3.
Two strains representing a single novel yeast species were isolated from a flower of Calycoopteris floribunda Lame (SK170T) and insect frass (ST-122) collected in Thailand. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and the sequence analysis of the D1/D2 domain of the large subunit rRNA gene and the internal transcribed spacer region, the two strains were assigned as a single novel Candida species in the Hyphopichia clade for which the name Candida wangnamkhiaoensis sp. nov. is proposed. The type strain is SK170T=BCC 39604T=NBRC 106724T=CBS 11695T).  相似文献   

4.
Studying rhizobia in the root nodules of Sphaerophysa salsula (Pall.) DC in the northwest of China, we obtained five strains classified as genus Rhizobium on the basis of their 16S rRNA gene sequences. The sequence similarity of strain CCNWQTX14T with the most related species was 99.0%. Further phylogenetic analysis of housekeeping genes (recA and atpD) suggested the five strains comprised a novel lineage within Rhizobium. The nifH and nodD gene sequences of CCNWQTX14T were phylogenetically closely related with those of Sinorhizobium kummerowiae and R. sphaerophysae, respectively. The five strains isolated from different places were also distinct from related Rhizobium species using ERIC fingerprint profiles. The DNA–DNA hybridization value was 41.8% between CCNWQTX14T and Rhizobium sphaerophysae CCNWGS0238T. Our novel strains were only able to form effective nodules on its original host Sphaerophysa salsula. Our data showed that the five Rhizobium strains formed a unique genomic species, for which a novel species Rhizobium helanshanense sp. nov. is proposed. The type strain is CCNWQTX14T (=ACCC 16237T =HAMBI 3083T).  相似文献   

5.

We present polyphasic taxonomic data to demonstrate that strain 125703-2019T, a human blood isolate, represents a novel species within the genus Pseudoclavibacter, and to reclassify the illegitimate Zimmermannella alba Lin et al., 2004 as Pseudoclavibacter albus comb. nov. Upon primary isolation, strain 125703-2019T could not be identified reliably using MALDI-TOF mass spectrometry during routine diagnostic work, but partial 16S rRNA gene sequence analysis revealed that it belonged to the genus Pseudoclavibacter. Average nucleotide identity and digital DNA-DNA hybridisation analyses confirmed that it represented a novel species within this genus. A detailed physiological characterisation yielded differential tests between the novel species and its nearest neighbor taxa, which could also be differentiated using MALDI-TOF mass spectrometry. We propose to formally classify this strain into the novel species Pseudoclavibacter triregionum sp. nov., with strain 125703-2019T (=?R-76471T, LMG 31777T, CCUG 74796T) as the type strain. The whole-genome assembly of strain 125703-2019T has a size of 2.4 Mb and a G?+?C content of 72.74%. A Pseudoclavibacter pangenome analysis revealed that 667 gene clusters were exclusively present in strain 125703-2019T. While these gene clusters were enriched in several COG functional categories, this analysis did not reveal functions that explained the occurrence of this species in human infection. Finally, several phylogenetic and phylogenomic analyses demonstrated that the genus Pseudoclavibacter is polyphyletic with Pseudoclavibacter soli and Pseudoclavibacter caeni representing a unique and deeply branching line of descent within the family Microbacteriaceae. We therefore also propose to reclassify both species into the novel genus Caespitibacter gen. nov. as Caespitibacter soli comb. nov. and Caespitibacter caeni comb. nov., respectively, and with C. soli comb. nov. as the type species.

  相似文献   

6.
Photoautotrophic micropropagation of Spathiphyllum   总被引:2,自引:0,他引:2  
In order to maximize yield, Spathiphyllum, an ornamental plant, was cultured in vitro in novel culture vessels termed Vitron. The best growth was obtained by culturing plantlets on sugar-free liquid medium under CO2 enrichment (3 000 μmol mol−1 24 h−1 d−1) at a low photon flux density (PPFD of 45 μmol m−2 s−1), suggesting that the novel Vitron culture system is suitable for the photoautotrophic micropropagation of Spathiphyllum.  相似文献   

7.
Five strains (LN12, LN14T, LN15T, LN16 and LN17T) representing three novel methylotrophic yeast species were isolated from the external surface of plant leaves by three-consecutive enrichments. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, the sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and the phylogenetic analysis, the five strains were assigned to be one novel Ogataea species and two novel Candida species. Three strains (LN12, LN14T and LN16) represent a single novel species of the genus Ogataea, for which the name Ogataea phyllophila sp. nov. is proposed. The type strain is LN14T (= BCC 42666T = NBRC 107780T = CBS 12095T). Strain LN15T was assigned to be Candida chumphonensis sp. nov. (type strain LN15T = BCC 42667T = NBRC 107781T = CBS 12096T). Strain LN17T represented another novel species of Candida that was named Candida mattranensis sp. nov. (type strain LN17T = BCC 42668T = NBRC 107782T = CBS 12097T).  相似文献   

8.
A novel anamorphic yeast strain, A1-01T, belonging to the genus Rhodotorula was isolated from a plant in Taiwan and analysed morphologically, physiologically and phylogenetically. Neither ballistoconidia nor sexual reproduction was observed. Sequence analysis of the 26S rRNA gene and the ITS region indicate that Rhodosporidium sphaerocarpum is the most closely related species, with 14 and 24 nucleotide substitutions, respectively. The novel species differed physiologically from R. sphaerocarpum in its ability to assimilate ethylamine and cadaverine, its inability to assimilate ethanol and nitrite. From these comparative analyses, the following novel yeast species is proposed: Rhodotorula taiwanensis sp. nov. with the type strain of A1-01T (BCRC 23118T = CBS 11729T).  相似文献   

9.
BRAF inhibitors improve melanoma patient survival, but resistance invariably develops. Here we report the discovery of a novel BRAF mutation that confers resistance to PLX4032 employing whole‐exome sequencing of drug‐resistant BRAFV600K melanoma cells. We further describe a new screening approach, a genome‐wide piggyBac mutagenesis screen that revealed clinically relevant aberrations (N‐terminal BRAF truncations and CRAF overexpression). The novel BRAF mutation, a Leu505 to His substitution (BRAFL505H), is the first resistance‐conferring second‐site mutation identified in BRAF mutant cells. The mutation replaces a small nonpolar amino acid at the BRAF‐PLX4032 interface with a larger polar residue. Moreover, we show that BRAFL505H, found in human prostate cancer, is itself a MAPK‐activating, PLX4032‐resistant oncogenic mutation. Lastly, we demonstrate that the PLX4032‐resistant melanoma cells are sensitive to novel, next‐generation BRAF inhibitors, especially the ‘paradox‐blocker’ PLX8394, supporting its use in clinical trials for treatment of melanoma patients with BRAF‐mutations.  相似文献   

10.
During a survey of yeasts associated with raw honey collected in Thailand, two strains of the Zygoascus clade were isolated from the Asian cavity-nesting honeybee Apis cerana and the stingless bee Homotrigona fimbriata. Phylogeny based on 26S rDNA D1/D2 sequences placed these yeasts as members of a clade including Candida bituminiphila, Candida patagonica and Candida polysorbophila. The strains of the two novel species, CBS 12271T and CBS 12270T, respectively, could be unquestionably distinguished from their relatives by rDNA sequences and other taxonomic characteristics. Therefore, the novel anamorphic species, Candida lundiana sp. nov. (type strain CBS 12271T = JCM 16823T) and Candida suthepensis sp. nov. (type strain CBS 12270T = JCM 16822T) are described.  相似文献   

11.
Yoon  Jaewoo 《Annals of microbiology》2019,69(12):1301-1308
Purpose

A polyphasic analysis was performed on a novel bacterium, designated strain KMU-143T, which was isolated from seawater collected in the Republic of Korea.

Methods

A novel marine bacterium KMU-143T was analyzed and described using a polyphasic taxonomic method including 16S rRNA gene sequence analysis, DNA–DNA hybridization, and physiological, biochemical, and chemotaxonomic analyses.

Results

Strain KMU-143T was Gram-stain-negative, strictly aerobic, oval-shaped, non-motile, and chemoorganoheterotrophic. Phylogenetic analysis based on the 16S rRNA gene sequence demonstrated that the novel marine bacterium belongs to the family Rhodobacteraceae, of the class Alphaproteobacteria, and that it possessed the highest (97.1%) sequence similarity with Sulfitobacter pontiacus ChLG 10T and Sulfitobacter undariae W-BA2T. DNA–DNA relatedness values between strains KMU-143T, S. pontiacus JCM 21789T, and S. undariae KCTC 42200T were less than 70%. The major isoprenoid quinone of the novel isolate was ubiquinone-10 (Q-10) and the major (> 10%) cellular fatty acids were C16:0 and C18:1 ω7c. The genomic DNA G+C content of strain KMU-143T was 56.1 mol%. The polar lipid profile of the strain KMU-143T was found to consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid, and two unidentified lipids.

Conclusion

Based on the discriminative phylogenetic position and combination of genotypic and phenotypic properties, the strain is considered to represent a new species of the genus Sulfitobacter for which the name Sulfitobacter salinus sp. nov. is proposed. The type strain of S. salinus sp. nov. is KMU-143T (= KCCM 90322T = NBRC 113459T).

  相似文献   

12.
A novel Gram-stain positive, aerobic, non-motile, spore-forming actinobacterium, designated YIM 75926T, was isolated from a soil sample collected at soil forest in Yuanmo county of Yunnan province, south-west China. Its taxonomic position was investigated by a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that the novel strain YIM 75926T belongs to the genus Pseudonocardia and was closely related to Pseudonocardia halophobica DSM 43089T (98.1% similarity). Strain YIM 75926T had MK-8 (H4) as the predominant menaquinone. The whole organism hydrolysates mainly consisted of meso-diaminopimelic acid, mannose, glucose, galactose and arabinose. The major cellular fatty acids were iso-C16:0 (37.16%) and C16:0 (12.43%). The DNA G+C content of strain YIM 75926T was 70.6 mol%. The resultant phylogenetic trees further showed that strain YIM 75926T belong to Pseudonocardia and had a distinct subclade within the evolutionary radiation of the genus Pseudonocardia. On the basis of its comparative analysis of phenotypic and genotypic characteristics, it is proposed that strain YIM 75926T represent a novel species of the genus Pseudonocardia, named Pseudonocardia yuanmoensis sp. nov. The type strain is YIM 75926T (=CCTCC AA 2011017T = JCM 18055T).  相似文献   

13.
《朊病毒》2013,7(4):141-144
Our laboratory recently reported a novel prion [SWI+], in the budding yeast Saccharomyces cerevisiae. [SWI+] is the prion form of Swi1, a component of the SWI/SNF chromatin-remodeling complex. Cells harboring [SWI+] exhibit a partial loss-of-function phenotype for SWI/SNF, which can be easily assayed by poor growth on some non-fermentable carbon sources such as raffinose. Swi1 is unique among yeast prion proteins for its nuclear localization and the fact that it comprises part of a large, multi-subunit protein complex. The discovery of [SWI+] demonstrates for the first time a link between prion function and chromatin remodeling, implying a possible role for prions in gene regulation. We believe that the unique features of this novel yeast prion will provide new insight into prion biology.  相似文献   

14.
Large-scale genetic studies revealed SCN2A as one of the most frequently mutated genes in patients with neurodevelopmental disorders. SCN2A encodes for the voltage-gated sodium channel isoform 1.2 (Nav1.2) expressed in the neurons of the central nervous system. Homozygous knockout (null) of Scn2a in mice is perinatal lethal, whereas heterozygous knockout of Scn2a (Scn2a+/−) results in mild behavior abnormalities. The Nav1.2 expression level in Scn2a+/− mice is reported to be around 50–60% of the wild-type (WT) level, which indicates that a close to 50% reduction of Nav1.2 expression may not be sufficient to lead to major behavioral phenotypes in mice. To overcome this barrier, we characterized a novel mouse model of severe Scn2a deficiency using a targeted gene-trap knockout (gtKO) strategy. This approach produces viable homozygous mice (Scn2agtKO/gtKO) that can survive to adulthood, with about a quarter of Nav1.2 expression compared to WT mice. Innate behaviors like nesting and mating were profoundly disrupted in Scn2agtKO/gtKO mice. Notably, Scn2agtKO/gtKO mice have a significantly decreased center duration compared to WT in the open field test, suggesting anxiety-like behaviors in a novel, open space. These mice also have decreased thermal and cold tolerance. Additionally, Scn2agtKO/gtKO mice have increased fix-pattern exploration in the novel object exploration test and a slight increase in grooming, indicating a detectable level of repetitive behaviors. They bury little to no marbles and have decreased interaction with novel objects. These Scn2a gene-trap knockout mice thus provide a unique model to study pathophysiology associated with severe Scn2a deficiency.  相似文献   

15.
A novel species belonging to the genus Grimontia is described in this study. A Gram-negative, chemoheterotrophic, obligately aerobic, catalase- and oxidase-positive, motile by a single polar flagellum, and rod-shaped bacterium, designated IMCC5001T, was isolated from surface seawater of the Yellow Sea. Strain IMCC5001T grew optimally at 30°C in the presence of 3.5% NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate was related most closely to Grimontia hollisae with a sequence similarity of 95.8%, and formed a robust phyletic lineage with Grimontia hollisae. Differential physiological characteristics between the new strain and Grimontia hollisae KCCM 41680T and chemotaxonomic characterization including determination of DNA G+C content, fatty acid methyl esters, quinone composition, and polar lipid profiles justified the assignment of strain IMCC5001T to the genus Grimontia as a novel species. In conclusion, strain IMCC5001T represents a new species, for which the name Grimontia marina sp. nov. is proposed, with the type strain IMCC5001T (=KCTC 22666T =NBRC 105794T).  相似文献   

16.
Kim  Sung-Min  Lee  Soon Dong  Koh  Young Sang  Kim  In Seop 《Antonie van Leeuwenhoek》2022,115(4):521-532

An actinobacterial strain, designated YC3-6T, was isolated from a larva cave in Jeju, Republic of Korea. The novel isolate was found to grow at 10–30 °C, pH 5.0–10.0 and 0–4% (w/v) NaCl. The 16S rRNA gene phylogeny showed that the novel isolate formed a distinct subline within the family Nocardiaceae. Levels of 16S rRNA gene similarity indicated that the close relatives are Rhodococcus cavernicola (98.4% sequence similarity) and “Rhodococcus psychrotolerans” (98.2%) followed by Antrihabitans stalactiti (96.8%). However, the core gene-based phylogeny revealed that the novel isolate formed a tight cluster with A. stalactiti and was separated from R. cavernicola and other members of the family Nocardiaceae. The morphological and chemotaxonomic characteristics of strain YC3-6T are in line with those of the genus Antrihabitans. Strain YC3-6T showed an average nucleotide identity of 75.5% and a digital DDH of 20.3% with A. stalactiti. In addition, the core gene analysis showed that R. cavernicola formed a distinct subline between an Antrihabitans cluster and Aldersonia kunmingensis, and well separated from members of the genus Rhodococcus. The average amino acid identity values of R. cavernicola to closely related neighbours were 69.3–69.4% with members of the genus Antrihabitans and 67.3% with Ald. kunmingensis, while the POCP values ranged from 56.9 to 63.6%. On the basis of results obtained here, strain YC3-6T is concluded to represent a novel species of the genus Antrihabitans, for which the name Antrihabitans stalagmiti sp. nov. (type strain, YC3-6T?=?KACC 19963T?=?DSM 107561T) is proposed. Based on overall genome relatedness and chemotaxonomic differences, it is also proposed that R. cavernicola Lee et al. 2020 be transferred to a new genus Spelaeibacter as Spelaeibacter cavernicola gen. nov., comb. nov.

  相似文献   

17.
Toxoplasma gondii belongs to the phylum Apicomplexa and is an important cause of congenital disease and infection in immunocompromised patients. Like most apicomplexans, T. gondii possesses several plant‐like features, such as the chloroplast‐like organelle, the apicoplast. We describe and characterize a novel organelle in T. gondii tachyzoites, which is visible by light microscopy and possesses a broad similarity to the plant vacuole. Electron tomography shows the interaction of this vacuole with other organelles. The presence of a plant‐like vacuolar proton pyrophosphatase (TgVP1), a vacuolar proton ATPase, a cathepsin L‐like protease (TgCPL), an aquaporin (TgAQP1), as well as Ca2+/H+ and Na+/H+ exchange activities, supports similarity to the plant vacuole. Biochemical characterization of TgVP1 in enriched fractions shows a functional similarity to the respective plant enzyme. The organelle is a Ca2+ store and appears to have protective effects against salt stress potentially linked to its sodium transport activity. In intracellular parasites, the organelle fragments, with some markers colocalizing with the late endosomal marker, Rab7, suggesting its involvement with the endocytic pathway. Studies on the characterization of this novel organelle will be relevant to the identification of novel targets for chemotherapy against T. gondii and other apicomplexan parasites as well.  相似文献   

18.
Three ascosporogenous yeast strains were isolated from the gut of the passalid beetle, Odontotaenius disjunctus, inhabiting on rotten oak trees. DNA sequence comparison and other taxonomic characteristics identified the strains as a novel species in the genus Kazachstania. The name Kazachstania intestinalis sp. nov. (type strain EH085T = ATCC MYA-4658T = CBS 11839T) is proposed for the strains. The yeast is homothallic, producing persistent asci with 1–4 spheroidal ascospores. Molecular phylogeny from ribosomal RNA gene sequences placed this novel species on the basal lineage of a clade including Kazachstania lodderae, Kazachstania exigua, Kazachstania martiniae, and other related Kazachstania spp., but none of those species was a close sister to K. intestinalis.  相似文献   

19.
Three strains (LM008T, LM068 and LM078T), representing two novel yeast species were isolated from the phylloplane of three plant species by an enrichment technique. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and the sequence analysis of the D1/D2 domain of the large subunit rRNA gene and the internal spacer region, the three strains were assigned as two novel Candida species. Strain LM008T was assigned to be Candida sirachaensis sp. nov. (type strain LM008T = BCC 47628T = NBRC 108605T CBS 12094T) in the Starmerella clade. Two strains (LM068 and LM078T) represent a single species in the Lodderomyces-Spathaspora clade for which the name Candida sakaeoensis sp. nov. is proposed with the type strain LM078T = BCC 47632T = NBRC 108895T = CBS 12318T.  相似文献   

20.
The Drosophila gene hclB encodes a histamine-gated chloride channel, which can be activated by the neurotoxin ivermectin when expressed in vitro. We have identified two novel hclB mutants, carrying either a missense mutation (P293S, allele hclB T1 ) or a putative null mutation (W111*, allele hclB T2 ), as well as a novel splice form of the gene. In survival studies, hclB T1 mutants were more sensitive to ivermectin than wild-type, whereas hclB T2 were more resistant. Electroretinogram recordings from the two mutants exhibited enlarged peak amplitudes of the transient components, indicating altered synaptic transmission between retinal photoneurons and their target cells. Ivermectin treatment severely affected or completely suppressed these transient components in an allele-specific manner. This suppression of synaptic signals by ivermectin was dose-dependent. These results identify HCLB as an important in vivo target for ivermectin in Drosophila melanogaster, and demonstrate the involvement of this protein in the visual pathway. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号