首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organosulfur compounds have been established to possess anticancer effects. To provide a better understanding of the biological function of dimethyl sulfides, dimethyl monosulfide (Me(2)S), dimethyl disulfide (Me(2)S(2)), dimethyl trisulfide (Me(2)S(3)) and dimethyl tetrasulfide (Me(2)S(4)) were used as experimental materials to investigate their effects on apoptosis induction in human leukemia Jurkat cells and HL-60 cells. Treatment with 20 muM dimethyl sulfides for 24 h decreased the viability of both cells. The cell viability-reducing effect of these sulfides was in the following order: Me(2)S(4) asymptotically equal to Me(2)S(3) > Me(2)S(2) asymptotically equal to Me(2)S for Jurkat cells and Me(2)S(4) > Me(2)S(3) > Me(2)S(2) asymptotically equal to Me(2)S for HL-60 cells. Me(2)S(3) and Me(2)S(4) significantly induced DNA fragmentation and caspase-3 activation. The addition of GSH or NAC completely suppressed the sulfide-induced apoptosis. Our results indicate that dimethyl sulfides with a larger number of sulfur atoms more strongly induced apoptosis in both human leukemia cells via ROS production and caspase-3 activation.  相似文献   

2.
Treatment of human promyelocytic leukemia HL-60 cells with apigeninidin could induce cytotoxicity (IC50 = ~80 μM), along with apoptotic sub-G1 cells, TUNEL-positive apoptotic DNA fragmentation, activation of the multidomain pro-apoptotic Bcl-2 proteins (Bak and Bax), mitochondrial membrane potential (Δψm) loss, release of mitochondrial cytochrome c and AIF into the cytoplasm, activation of caspase-9, -3, -8, and -7, and cleavage of PARP and lamin B. These induced apoptotic events were accompanied by decrease of Bcl-2 level and increase of Bak and Bax levels. Apigeninidin-induced sub-G1 cells and activation of Bak and Bax were also detected in human acute leukemia Jurkat T cells, but not in Jurkat T cells overexpressing Bcl-2. Pretreatment of HL-60 cells with the pan-caspase inhibitor z-VAD-fmk reduced significantly apigeninidin-induced sub-G1 cells and caspase cascade activation, whereas it failed to suppress Bak and Bax activations, Δψm loss, and release of mitochondrial cytochrome c and AIF. None of FADD and caspase-8 deficiencies affected the sensitivity of Jurkat T cells to apigeninidin-induced cytotoxicity. These results demonstrated that apigeninidin-induced apoptosis was mediated by activation of Bak and Bax, mitochondrial damage and resultant release of not only cytochrome c, causing caspase cascade activation, but also caspase-independent death effector AIF in HL-60 cells.  相似文献   

3.
Since arsenic trioxide (As3+) has been successfully used in the treatment of acute promyelocytic leukemia (APL), its adverse effects on patients have been problematic and required a solution. Considering the good therapeutic potency and low toxicity of tetraarsenictetrasulfide (As4S4) in the treatment of APL, we investigated the effects of combining As4S4 and As3+ on the apoptosis and differentiation of NB4 and primary APL cells. As4S4, acting similarly to As3+, arrested the G1/S transition, induced the accumulation of cellular reactive oxygen species, and promoted apoptosis. Additionally, low concentrations of As4S4 (0.1–0.4 μM) induced differentiation of NB4 and primary APL cells. Compared with the As4S4- or As3+-treated groups, the combination of As4S4 and As3+ obviously promoted apoptosis and differentiation of NB4 and primary APL cells. Mechanistic studies suggested that As4S4 acted synergistically with As3+ to down-regulate Bcl-2 and nuclear factor-κB expression, up-regulate Bax and p53 expression, and induce activation of caspase-12 and caspase-3. Moreover, the combination of low concentrations of As4S4 and As3+ enhanced degradation of the promyelocytic leukemia-retinoic acid receptor α oncoprotein. In summary, As4S4 and As3+ synergistically induce the apoptosis and differentiation of NB4 and primary APL cells.  相似文献   

4.
We have recently shown that nitric-oxide (NO)-induced apoptosis in Jurkat human leukemia cells requires degradation of mitochondria phospholipid cardiolipin, cytochrome c release, and activation of caspase-9 and caspase-3. Moreover, an inhibitor of lipid peroxidation, Trolox, suppressed apoptosis in Jurkat cells induced by NO donor glycerol trinitrate. Here we demonstrate that this antiapoptotic effect of Trolox occurred despite massive release of the mitochondrial protein cytochrome c into the cytosol and mitochondrial damage. Incubation with Trolox caused a profound reduction of intracellular ATP concentration in Jurkat cells treated by NO. Trolox prevented cardiolipin degradation and caused its accumulation in Jurkat cells. Furthermore, Trolox markedly downregulated the NO-mediated activation of caspase-9 and caspase-3. Caspase-9 is known to be activated by released cytochrome c and together with caspase-3 is considered the most proximal to mitochondria. Our results suggest that the targets of the antiapoptotic effect of Trolox are located downstream of the mitochondria and that caspase activation and subsequent apoptosis could be blocked even in the presence of cytochrome c released from the mitochondria.  相似文献   

5.
A ginseng polysaccharide was extracted, purified, and modified by nitric acid-selenious acid (HNO3-H2SeO3) method to yield one selenylation-modified polysaccharide (sGP). We reported for the first time the anticancer potential of sGP on the human promyelocytic leukemia HL-60 cell line and evaluated its relevant underlying mechanism. Our results showed that sGP markedly inhibited the growth of HL-60 cells via induction of apoptosis. The event of apoptosis was accompanied by the formation of apoptotic bodies; the release of cytochrome c; loss of mitochondrial membrane potential; and activation of caspase-9, caspase-3, and cleavage of poly ADP ribose polymerase (PARP) in HL-60 cells. In addition, western blot analysis showed that sGP inhibited antiapoptotic Bcl-2 protein expression and increased proapoptotic Bax protein expression in cells under identical conditions. Together, our study suggests that sGP induces apoptosis of HL-60 cells through the mitochondrial-dependent pathway.  相似文献   

6.

Background

Phloxine B (PhB; 2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-fluorescein), an artificial xanthene colorant, has been used as a red coloring agent in drugs and cosmetics as well as foods in some countries. However, little effort has been devoted to the study of this colorant as a potentially useful medicinal agent.

Methods

We investigated the daily light-induced photocytotoxicity of PhB in two human leukemia cells, HL-60 and Jurkat, and its underlying mechanisms by in vitro experiments using antioxidants.

Reuslts and conclusions

PhB inhibited cell proliferation more preferentially to HL-60 cells than to Jurkat cells. Co-treatment of catalase completely blocked the photocytotoxicity by PhB in HL-60 cells, whereas the effect of histidine was only partial, suggesting that hydrogen peroxide (H2O2), rather than singlet oxygen, might be a prerequisite for the PhB-induced HL-60 cell death. Actually, PhB produced a significant amount of H2O2 in the media as well as in the cells in concentration- and light-dependent manners. Furthermore, methionine, a hypochlorous acid (HOCl) scavenger, also significantly attenuated the cytotoxicity in HL-60 cells, but not in Jurkat cells, indicating the involvement of myeloperoxidase (MPO)-dependent hypohalous acid formation during the photocytotoxicity. In vitro experiments revealed that halogenated tyrosine was generated from the reaction of bovine serum albumin with PhB and HL-60 cell lysate. The present findings suggested that PhB induced a differential photodynamic action in the MPO-containing leukemia cells through an H2O2-dependent mechanism.

General significance

Our findings provide new insights into the molecular mechanisms underlying the PhB-induced apoptosis and also evaluated PhB as a promising PDT agent.  相似文献   

7.
While tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising new agent for the treatment of cancer, resistance to TRAIL remains a therapeutic challenge. Identifying agents to use in combination with TRAIL to enhance apoptosis in leukemia cells would increase the potential utility of this agent as a therapy for leukemia. Here, we show that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), a natural ligand for peroxisome proliferator-activated receptor γ (PPARγ), can sensitize TRAIL-resistant leukemic HL-60 cells to TRAIL-induced apoptosis. The sensitization to TRAIL-induced apoptosis by 15d-PGJ2 was not blocked by a PPARγ inhibitor (GW9662), suggesting a PPARγ-independent mechanism. This process was accompanied by activation of caspase-8, caspase-9, and caspase-3 and was concomitant with Bid and PARP cleavage. We observed significant decreases in XIAP, Bcl-2, and c-FLIP after cotreatment with 15d-PGJ2 and TRAIL. We also observed the inhibition of Akt expression and phosphorylation by cotreatment with 15d-PGJ2 and TRAIL. Furthermore, inactivation of Akt by Akt inhibitor IV sensitized human leukemic HL-60 cells to TRAIL, indicating a key role for Akt inhibition in these events. Taken together, these findings indicate that 15d-PGJ2 may augment TRAIL-induced apoptosis in human leukemia cells by down-regulating the expression and phosphorylation of Akt.  相似文献   

8.
Doxorubicin (Dox) is widely used to treat a variety of tumors. However, resistance to this drug is common, making successful treatment more difficult. Previously, we introduced a novel phytosphingosine derivative, N,N-dimethyl phytosphingosine (DMPS), as a potent anticancer therapeutic agent in human leukemia cells. This study was performed to investigate whether DMPS can sensitize HL-60/MX2, a multidrug-resistant variant of HL-60, to Dox-induced apoptosis. Low concentrations of DMPS sensitized HL-60/MX2 cells to Dox-induced apoptosis. Combined Dox + DMPS treatment-induced apoptosis was accompanied by the activation of caspase-8 and caspase-3 as well as PARP cleavage. Cytochrome c and AIF release were also observed in Dox + DMPS-treated HL60/MX2 cells. Pretreatment with z-VAD-fmk markedly prevented caspase-3 activation and moderately suppressed apoptosis, suggesting that Dox + DMPS-induced apoptosis is somewhat (not completely) dependent on caspase. Cytochrome c and AIF release were not affected by pretreatment with z-VAD-fmk. The ROS scavenger NAC efficiently suppressed not only ROS generation, but also caspase-3-mediated PARP cleavage, apoptosis, and release of cytochrome c and AIF, indicating a role of ROS in combined Dox + DMPS treatment-induced apoptotic death signaling. Taken together, these observations suggest that DMPS may be used as a therapeutic agent for overcoming drug-resistance in cancer cells by enhancing drug-induced apoptosis.  相似文献   

9.
This report is designed to explore the molecular mechanism by which dihydroartemisinin (DHA) and ionizing radiation (IR) induce apoptosis in human lung adenocarcinoma A549 cells. DHA treatment induced a concentration- and time-dependent reactive oxygen species (ROS)-mediated cell death with typical apoptotic characteristics such as breakdown of mitochondrial membrane potential (Δψm), caspases activation, DNA fragmentation and phosphatidylserine (PS) externalization. Inhibition of caspase-8 or -9 significantly blocked DHA-induced decrease of cell viability and activation of caspase-3, suggesting the dominant roles of caspase-8 and -9 in DHA-induced apoptosis. Silencing of proapoptotic protein Bax but not Bak significantly inhibited DHA-induced apoptosis in which Bax but not Bak was activated. In contrast to DHA treatment, low-dose (2 or 4 Gy) IR induced a long-playing generation of ROS. Interestingly, IR treatment for 24 h induced G2/M cell cycle arrest that disappeared at 36 h after treatment. More importantly, IR synergistically potentiated DHA-induced generation of ROS, activation of caspase-8 and -3, irreparable G2/M arrest and apoptosis, but did not enhance DHA-induced loss of Δψm and activation of caspase-9. Taken together, our results strongly demonstrate the remarkable synergistic efficacy of combination treatment with DHA and low-dose IR for A549 cells in which IR potentiates DHA-induced apoptosis largely by enhancing the caspase-8-mediated extrinsic pathway.  相似文献   

10.
 Low elimination capacities (less than 10 g m-3 day-1) were observed for the odorant dimethyl sulphide (Me2S) when either wood bark or compost was used as the carrier material in a laboratory-scale biofilter. Enrichment experiments were set up by incubation of garden soil samples during 4 weeks with 100 ppm (v/v) headspace concentrations of both Me2S and dimethyl disulphide (Me2S2). After transfer to a mineral medium, Me2S- and Me2S2-degrading enrichment cultures were obtained for all five soil samples tested, both compounds being converted stoichiometrically to sulphuric acid. Upon inoculation of the laboratory-scale biofilter with one of these enrichment cultures (±120 g cell dry weight m-3 reactor), the elimination capacity for Me2S increased in a 3-week period to 35 g m-3 day-1 and 680 g m-3 day-1 when wood bark and compost were used as the respective carrier materials. Both inoculated biofilters were able to degrade Me2S2, however the elimination capacities obtained for Me2S2 were lower (e.g. 24 g m-3 day-1 for the wood bark filter) compared to those for Me2S. For both inoculated biofilters, a gradual decrease of the elimination capacity for the methyl sulphides was observed as a result of acidification of the carrier material, suggesting that pH regulation is necessary if long-term biofiltration experiments are to be performed. Received: 6 June 1995/Received revision: 10 August 1995/Accepted: 22 August 1995  相似文献   

11.
It is now well established that the caspases, a family of cysteine proteases, play a key role in apoptosis. Although overexpressing each of the caspases in cells triggered apoptosis, the precise role and contribution of individual caspases are still unclear. Caspase-1, the first caspase discovered, was initially implicated in mammalian apoptosis because of its similarity to the gene productced-3.Using whole cells as well as anin vitrosystem to study apoptosis, the role of caspase-1 in Fas-mediated apoptosis in Jurkat T cells was examined in greater detail. Using various peptide-based caspase inhibitors, our results showed thatN-acetyl-Tyr-Val-Ala-Asp chloromethyl ketone and benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone efficiently blocked Fas-mediated apoptosis in Jurkat T cells, whereasN-acetyl-Tyr-Val-Ala-Asp aldehyde, which is more specific for caspase-1, had little effect. Cell lysates derived from anti-Fas-stimulated cells, which readily induced apoptotic nuclei morphology and DNA fragmentation in isolated thymocyte nuclei, had no caspase-1 activity using proIL-1β as a substrate. Time-course studies showed no caspase-1 activity during the activation of apoptosis in Jurkat cells by agonistic Fas antibodies. Furthermore, no pro-caspase-1 protein nor activated form of the protein was detected in normal or apoptotic Jurkat cells. In contrast, both caspase-2 and caspase-3 were readily detected as proenzymes in control cells and their activated forms were detected in apoptotic cells. Incubation of recombinant active caspase-1 with control cell lysates did not activate the apoptotic cascade as shown by the lack of detectable apoptotic nuclei promoting activity using isolated nuclei as substrate. However, under similar conditions proIL-1β was readily processed into the mature cytokine, indicating that the recombinant caspase-1 remained active in the presence of control cell lysates. Taken together our results demonstrate that caspase-1 is not required for the induction of apoptosis in Jurkat T cells mediated by the Fas antigen.  相似文献   

12.
In the present study, we investigated the effect of a novel 3-arylisoquinoline derivative 3-(6-ethyl-benzo[1,3]dioxol-5-yl)-7,8-dimethoxy-2-methyl-2H-isoquinolin-1-one (CWJ-081) on the induction of apoptosis and the putative molecular mechanism of its action in human leukemia cells. Treatment with CWJ-081 exhibited a characteristic feature of apoptosis including externalization of phosphatidylserine and formation of DNA fragmentation in human leukemia cell lines (HL-60, U-937, K-562). In addition, stimulation of HL-60 cells with CWJ-081 induced a series of intracellular events: (1) the activations of caspase-8, -9, and -3; (2) the cleavage of poly (ADP-ribose) polymerase-1 (PARP-1); (3) the loss of mitochondrial membrane potential (ΔΨm); (4) the release of cytochrome c; and (5) the modulation of Bcl-2 family proteins. We further demonstrated that CWJ-081 induces reactive oxygen species (ROS) production and c-Jun NH2-terminal kinase (JNK) activation. Pretreatment with the antioxidant N-acetyl-l-cysteine (NAC) markedly inhibited the CWJ-081-induced JNK activation and apoptosis. Moreover, CWJ-081-induced apoptosis was suppressed in the presence of SP600125, a specific JNK inhibitor. Taken together, these data suggest that CWJ-081 induces apoptosis via the mitochondrial apoptotic pathway in HL-60 cells, and ROS-mediated JNK activation plays a key role in the CWJ-081-induced apoptosis.  相似文献   

13.
Activation of executioner caspases during receptor-mediated apoptosis in type II cells requires the engagement of the mitochondrial apoptotic pathway. Although it is well established that recruitment of mitochondria in this context involves the cleavage of Bid to truncated Bid (tBid), the precise post-mitochondrial signaling responsible for executioner caspase activation is controversial. Here, we used distinct clones of type II Jurkat T-lymphocytes in which the mitochondrial apoptotic pathway had been inhibited to investigate the molecular requirements necessary for Fas-induced apoptosis. Cells overexpressing either Bcl-2 or Bcl-xL were protected from apoptosis induced by agonistic anti-Fas antibody. By comparison, Apaf-1-deficient Jurkat cells were sensitive to anti-Fas, exhibiting Bid cleavage, Bak activation, the release of cytochrome c and Smac, and activation of executioner caspase-3. Inhibiting downstream caspase activation with the pharmacological inhibitor Z-DEVD-fmk or by expressing the BIR1/BIR2 domains of X-linked inhibitor of apoptosis protein (XIAP) decreased all anti-Fas-induced apoptotic changes. Additionally, pretreatment of Bcl-xL-overexpressing cells with a Smac mimetic sensitized these cells to Fas-induced apoptosis. Combined, our findings strongly suggest that Fas-mediated activation of executioner caspases and induction of apoptosis do not depend on apoptosome-mediated caspase-9 activation in prototypical type II cells.  相似文献   

14.
Ceramide, a biologically active sphingolipid in cell death signaling, accumulates upon CD95L treatment, concomitantly to apoptosis induction in Jurkat leukemia T cells. Herein, we show that ceramide did not increase in caspase-8 and -10-doubly deficient Jurkat cells in response to CD95L, indicating that apical caspases are essential for CD95L-triggered ceramide formation. Jurkat cells are typically defined as type 2 cells, which require the activation of the mitochondrial pathway for efficient apoptosis induction in response to CD95L. Caspase-9-deficient Jurkat cells significantly resisted CD95L-induced apoptosis, despite ceramide accumulation. Knock-down of sphingomyelin synthase 1, which metabolizes ceramide to sphingomyelin, enhanced (i) CD95L-triggered ceramide production, (ii) cytochrome c release from the mitochondria and (iii) caspase-9 activation. Exogenous ceramide-induced caspase-3 activation and apoptosis were impaired in caspase-9-deficient Jurkat cells. Conversely, caspase-9 re-expression in caspase-9-deficient Jurkat cells restored caspase-3 activation and apoptosis upon exogenous ceramide treatment. Collectively, our data provide genetic evidence that CD95L-triggered endogenous ceramide increase in Jurkat leukemia T cells (i) is not a mere consequence of cell death and occurs mainly in a caspase-9-independent manner, (ii) is likely involved in the pro-apoptotic mitochondrial pathway leading to caspase-9 activation.  相似文献   

15.
16.
Peptidylarginine deiminases (PADIs) convert peptidylarginine into citrulline via posttranslational modification. One member of the family, PADI4, plays an important role in immune cell differentiation and cell death. To elucidate the participation of PADI4 in haematopoietic cell death, we examine whether inducible overexpression of PADI4 enhances the apoptotic cell death. PADI4 reduced the viability in a dose- and time-dependent manner of human leukemia HL-60 cells and human acute T leukemia Jurkat cells. The apoptosis-inducing activities were determined by nuclear condensation, DNA fragmentation, sub-G1 appearance, loss of mitochondrial membrane potential (Δψm), release of mitochondrial cytochrome c into cytoplasm and proteolytic activation of caspase 9 and 3. Following PADI4 overexpression, cells arrest in G1 phase significantly before their entrance into apoptotic cell death. PADI4 increases tumor suppressor p53 and its downstream p21 to control cell cycle. In the detections of protein expression and kinase activity, all protein levels of cyclin-dependent kinases (CDKs) and cyclins are not reduced except cyclin D, however, CDK2 (G1 entry S phase) and CDK1 (G2 entry M phase) enzyme activities are inhibited by conditionally inducible PADI4. p53 also expands its other downstream Bax to induce cytochrome c release from mitochondria. According to these data, we suggest that PADI4 induces apoptosis mainly through cell cycle arrest and mitochondria-mediated pathway. Furthermore, p53 features in PADI4-induced apoptosis by increasing intracellular p21 to control cell cycle and by Bax accumulation to decline Bcl-2 function, destroy Δψm, release cytochrome c to cytoplasm and activate the caspase cascade.  相似文献   

17.
Erypoegin K, an isoflavone isolated from the stem bark of Erythrina poeppigiana, has potent apoptosis-inducing effect on human leukemia HL-60 cells. Erypoegin K has a chiral carbon at the C-2′′ position of its furan ring and naturally occurs as a racemic mixture of (S)- and (R)-isomers. In the present study, we semi-synthesized (RS)-erypoegin K from genistein and separated the optical isomers by HPLC using a chiral column to characterize its apoptosis-inducing activity. Apoptotic cell death was assessed by analyzing caspase-3 and caspase-9 activation, nuclear fragmentation, and genomic DNA ladder formation. (S)-erypoegin K showed exclusive anti-proliferative and apoptosis-inducing activity, with an IC50 value of 90 nM, about 50% lower than that of its racemic mixture (175 nM). By contrast, no apoptosis-inducing activity was shown by the (R)-isomer. In addition, methylglyoxal accumulation in the culture medium was observed only in cells treated with (S)-erypoegin K. These results demonstrated that (S)-erypoegin K is a unique bioactive component that has potent apoptosis-inducing activity on HL-60 cells.  相似文献   

18.
Haplophytin-A (10-methoxy-2,2-dimethyl-2,6-dihydro-pyrano[3,2-c]quinolin-5-one), a novel quinoline alkaloid, was isolated from the Haplophyllum acutifolium. In this study, we investigated the effect of haplophytin-A on the apoptotic activity and the molecular mechanism of action in human promyelocytic leukemia HL-60 cells. Treatment with haplophytin-A (50 μM) induced classical features of apoptosis, such as, DNA fragmentation, DNA ladder formation, and the externalization of annexin-V-targeted phosphatidylserine residues in HL-60 cells. In addition, haplophytin-A triggered the activations of caspase-8, -9, and -3, and the cleavage of poly (ADP-ribose) polymerase (PARP) in HL-60 cells. In addition, haplophytin-A caused the loss of mitochondrial membrane potential (ΔΨm) and the release of cytochrome c and Smac/DIABLO to the cytosol, and modulated the expression levels of Bcl-2 family proteins. We further demonstrated that knockdown of caspase-8 using its siRNA inhibited the mitochondrial translocation of tBid, the activations of caspase-9 and caspase-3, and subsequent DNA fragmentation by haplophytin-A. Furthermore, haplophytin-A-induced the formation of death-inducing signaling complex (DISC) and then activated caspase-8 in HL-60 cells. During haplophytin-A-induced apoptosis, caspase-8-stimulated tBid provide a link between the death receptor-mediated extrinsic pathway and the mitochondria- mediated intrinsic pathway. Taken together, these results suggest that the novel compound haplophytin-A play therapeutical role for leukemia via the potent apoptotic activity through the extrinsic pathway, involving the intrinsic pathway.  相似文献   

19.
We have examined the effects of the CDK1 inhibitor CGP74514A on cell cycle- and apoptosis-related events in human leukemia cells. An 18-hr exposure to 5 mM CGP74514A induced mitochondrial damage (i.e., loss of Dym) and apoptosis in multiple human leukemia cell lines (e.g., U937, HL-60, KG-1, CCRF-CEM, Raji, and THP; range 30-95%). In U937 cells, CGP74514A- induced apoptosis (5 mM) became apparent within 4 hr and approached 100% by 24 hr. The pan- caspase inhibitor Boc-fmk and the caspase-8 inhibitor IETD-fmk opposed CGP74514A-induced caspase-9 activation and PARP degradation, but not cytochrome c or Smac/DIABLO release. CGP74514A-mediated apoptosis was substantially blocked by ectopic expression of full-length Bcl- 2, a loop-deleted mutant Bcl-2, and Bcl-xL. CGP74514A treatment (5 mM; 18 hr) resulted in increased p21CIP1 expression, p27KIP1 degradation, diminished E2F1 expression, and dephosphorylation of p34cdc2. It also induced early (i.e., within 2 hr) inhibition of CDK1 activity and dephosphorylation of pRb, followed by pRb degradation, but did not block pRb phosphorylation at CDK2- and CDK4- specific sites. These findings indicate that the selective CDK1 inhibitor, CGP74514A, induces complex changes in cell cycle-related proteins in human leukemia cells accompanied by extensive mitochondrial damage, caspase activation, and apoptosis.

Key Words:

Leukemia, CDK1 Inhibitor, Apoptosis, CGP74514A  相似文献   

20.
Myeloperoxidase is abundantly present in inflammatory diseases where activation of monocytes/macrophages and T-cell-mediated immune response occurs. The potent oxidant hypochlorous acid (HOCl), generated by the myeloperoxidase–H2O2–chloride system of activated phagocytes, converts low-density lipoprotein (LDL) into a proinflammatory lipoprotein particle. Here, we investigated the apoptotic effect of HOCl–LDL, an in vivo occurring LDL modification, on human T-cell lymphoblast-like Jurkat cells. Experiments revealed that HOCl–LDL, depending on the oxidant:lipoprotein molar ratio, induces apoptosis via activation of caspase-3, PARP cleavage and accumulation of reactive oxygen species. The absence of Fas-associated protein with death domain or caspase-8 in mutant cells did not prevent HOCl–LDL induced apoptosis. In contrast, overexpression of the anti-apoptotic Bcl-2 protein protects Jurkat cells against HOCl–LDL-induced apoptosis and prevents accumulation of reactive oxygen species. We conclude that HOCl–LDL-mediated apoptosis in Jurkat cells follows predominantly the intrinsic, mitochondrial pathway. Insitu experiments revealed that an antibody raised against HOCl–LDL recognized epitopes that colocalize both with myeloperoxidase and CD3-positive T-cells in human decidual tissue where local stimulation of the immune system occurs. We provide convincing evidence that formation of HOCl-modified (lipo)proteins generated by the myeloperoxidase–H2O2–chloride system contributes to apoptosis in T-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号