首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesized PCs containing docosahexaenoic acid (DHA), arachidonic acid (AA), linoleic acid (LA), and palmitic acid (PA) at known positions in the glycerol moiety were oxidized in liposomes, bulk, and organic solvent. In bulk and organic solvent, the oxidative stability of PC decreased with increasing degrees of unsaturation. However, the degree of unsaturation had little effect on the stability of PC in liposomes. The oxidative stability of PC in liposomes would be affected by the chemical reactivity based on the degree of unsaturation and by the conformation of fatty acyl component in PC bilayers. When the oxidative stability of 1-PA-2-LA-PC or 1-PA-2-AA-PC was compared with that of a 1:1 (mol ratio) mixture of 1,2-diPA-PC+1,2-diLA-PC, or 1,2-diPA-PC+1,2-diAA-PC, respectively, the former PC was more oxidatively stable than that of the latter PC mixture in all oxidation systems, although the degree of unsaturation of 1-PA-2-PUFA-PC was the same as that of the corresponding mixture of diPA-PC+diPUFA-PC. The higher oxidative stability of 1-PA-2-PUFA-PC than that of a corresponding mixture of diPA-PC+diPUFA-PC in liposomes was suggested to be due to the different conformation of PC bilayers and the different rate of hydrogen abstraction by free radicals from intermolecular and intramolecular acyl groups.  相似文献   

2.
多不饱和脂肪酸的研究进展   总被引:28,自引:0,他引:28  
蔡双莲  李敏 《生命科学研究》2003,7(4):289-292,304
多不饱和脂肪酸(PUFA)是人类的必需脂肪酸,对人体有重要的生理功能,能调节人体的脂质代谢、治疗和预防心脑血管疾病、抗癌、对抗肥胖,促进生长发育和提高幼体的成活率等.综述了PUFA的生理作用和来源的研究进展,特别是在对抗肥胖、促进生长发育、提高幼体的成活率等方面的研究情况进行了阐述.  相似文献   

3.
ABSTRACT

Polyunsaturated fatty acids like EPA and DHA have attracted a great attention due to their beneficial effects on human health. At present, fish oil is the major source of EPA and DHA. Various alternative sources are being explored to get these essential fatty acids. Genes encoding enzymes involved in the biosyntheses of PUFAs have been identified, cloned and gene prospecting becomes a novel method for enhanced PUFA production. Desaturase and elongase genes have important biotechnological appeal from genetic engineering point of view. This review highlights the research and results on such enzymes.  相似文献   

4.
多不饱和脂肪酸合成途径研究进展   总被引:1,自引:0,他引:1  
多不饱和脂肪酸在大多数生物体膜生物学和信号传递过程中起着至关重要的作用。最近研究发现,一些深海生物合成多不饱和脂肪酸并非由饱和脂肪酸的延长及脱饱和反应,而是由聚酮合酶途径(polyketide synthase,PKS)直接合成。介绍多不饱和脂肪酸的生物合成并总结近年来聚酮合酶这一新途径及其分子机制的研究进展。  相似文献   

5.
The Polyunsaturated Fatty Acids of Marine Dinoflagellates   总被引:1,自引:0,他引:1  
SYNOPSIS. Eight photosynthetic and one heterotrophic, marine dinoflagellates were cultured axenically in chemically defined media and their fatty acids characterized. Palmitic, octadecatetraenoic and docosahexaenoic were the most typical fatty acids. Photosynthetic forms also contained the polyunsaturates icosapentaenoic acid and α-linolenic acid, the latter as a relatively minor component. The galactolipids of one photosynthetic species, Glenodinium sp., were isolated and their fatty acids analyzed. Octadecatetraenoic acid was the predominant fatty acid, particularly of the monogalactosyl diglyceride fraction.
The relationship of these findings to the body of knowledge of the photosynthesis-associated lipids of eucaryotic microbes and to the ecology of polyunsaturated fatty acids in marine food chains is discussed.  相似文献   

6.
7.
8.
多不饱和脂肪酸的研究进展   总被引:4,自引:0,他引:4  
多不饱和脂肪酸(PUFAs)为一独特的生物活性物质,在生物系统中具有广泛的功能。过去二十年的研究已经揭示了其作用、参与类二十烷的代谢机理及在哺乳动物中的体内平衡功能。越来越多的研究认为:在类二十烷代谢系统中,采用普通的医疗条件诊治因多不饱和脂肪酸吸收和代谢紊乱所致的疾病效果甚微随着PUFAs开发应用领域的扩大,纯PUFAs脂质的需求量越来越多,而来自于植物、哺乳动物和海洋鱼的PUFAs远远不能满足市场需求,微生物特别是藻类、真菌能合成几乎所有的PUFAs并能在工业规模上培育而被视为有开发价值的可替代的生物资源 。  相似文献   

9.
10.
Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways that mediate the physiological effects of dietary fatty acids, we have developed a method to supplement the C. elegans diet with unsaturated fatty acids. Supplementation is an effective means to alter the fatty acid composition of worms and can also be used to rescue defects in fatty acid-deficient mutants. Our method uses nematode growth medium agar (NGM) supplemented with fatty acidsodium salts. The fatty acids in the supplemented plates become incorporated into the membranes of the bacterial food source, which is then taken up by the C. elegans that feed on the supplemented bacteria. We also describe a gas chromatography protocol to monitor the changes in fatty acid composition that occur in supplemented worms. This is an efficient way to supplement the diets of both large and small populations of C. elegans, allowing for a range of applications for this method.  相似文献   

11.
12.
Journal of Ichthyology - The review considers probable ways to overcome the deficiency of eicosapentaenoic and docosahexaenoic acids in the human diet through the rational development of...  相似文献   

13.
亚油酸、亚麻酸是哺乳动物体内的必需脂肪酸,但哺乳动物由于缺乏△12和ω-3脂肪酸脱氢酶而自身不能合成.△12和ω-3脂肪酸脱氢酶存在于真菌、植物和一些低等动物中.为了实现哺乳动物细胞亚油酸的自身合成,克隆了线虫编码△12脂肪酸脱氢酶的FAT-2基因eDNA序列,通过优化密码子,构建真核表达载体,稳定转染细胞,经抗生素筛选获得稳定整合FAT-2基因的CHO细胞.PCR和RNA印迹(Northern blot)验证了基因的整合和表达.气相色谱分析细胞的脂肪酸含量表明,FAT-2基因的表达显著提高了转基因细胞中亚油酸的含量,亚油酸含量为阴性对照细胞的2.4倍.研究结果表明,低等动物△12脂肪酸脱氢酶可以重建哺乳动物多不饱和脂肪酸合成途径,并利用细胞中的油酸合成亚油酸.上述研究为进一步利用转基因技术促进农业动物合成多不饱和脂肪酸从而提高食品营养价值奠定基础.  相似文献   

14.
15.
微生物多不饱和脂肪酸的研究进展   总被引:8,自引:1,他引:8  
介绍了多不饱和脂肪酸(PUFAs)的微生物来源在微生物体内的代谢途径、分子生物学研究进展以及微生物的发酵生产状况。重点论述了微生物PUFAs的最新分子生物学研究进展。  相似文献   

16.
目的:研究终极腐霉的脂肪酸成分及其代谢途径。方法:用气相色谱-质谱仪对终极腐霉的脂肪酸进行分析,阐述其代谢途径和菌体生理特性。结果:共有15种不饱和脂肪酸,占总脂肪酸的68.87%,其中EPA含量为8.15%。结论:终极腐霉具有高产EPA的商业应用前景,△6,△12,△15脂肪酸脱氢酶是阻碍EPA高产的关键所在。  相似文献   

17.
The polar lipids and fatty acids of the microalgae Pavlova lutheriwere analyzed. The principal polar lipid components were monogalactosyldiacylglycerol(MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol(SQDG), 1,2-diacylglyceryl-O-2'-hydroxymethyl-(N,N,N-trimethyl)-rß-alanine(DGTA) and 1,2-diacylglyceryl-3-O-carboxyhydroxymethylcholine(DGCC). Each polar lipid had a different set of combinationsof fatty acids, the most characteristic feature being the localizationof polyunsaturated fatty acids in the betaine lipids. The percentagesof polyunsaturated fatty acids in DGTA and DGCC were 70% and50%, respectively, and these fatty acids were localized at theC-2 position in the betaine lipids. An analysis of the incorporationof 14C-labelled compounds into the algal cells indicated theinvolvement of DGCC in acyl exchange. (Received October 17, 1994; Accepted October 2, 1995)  相似文献   

18.
Early recognition of pathological processes in CNS by the biotesting method allows correcting these processes since the prenatal period. A natural product, epaden, produced from fat of marine hydrobionts ( -3-polyunsaturated fatty acids) has an antiaggregation and antioxidant activity, as well as a pronounced adaptogenic, protective, and reducing action. Addition of epaden to diet of pregnant rats decreases twofold fetal lethality under effect of peptide factors causing disturbances of motor activity in newborns, increases viability index, leads to normalization of simple motor acts, and prevents from development of severe motor disorders in rat pups. A preliminary administration of epaden and its simultaneous administration with pathogenic factors produce a more pronounced positive effect than the subsequent treatment of induced embryological and motor disturbances.  相似文献   

19.
长链不饱和脂肪酸(LC-PUFAs)对人类健康具有重要作用,通过转基因植物生产LC-PUFAs具有低成本、可持续、污染少等诸多优势。本文简要介绍了LC-PUFAs的作用、来源及其植物生物合成途径,综述了转基因植物合成LC-PUFAs的研究进展,并对如何进一步提高LC-PUFAs产量进行了探讨。  相似文献   

20.
There is a growing number of animal models and clinical trials of n-3 polyunsaturated fatty acid (PUFAs) supplementation in disease. Epidemiologic and biochemical studies have suggested beneficial effects of n-3 PUFAs. But also, the use of n-3 PUFAs has some potential toxicological risks that can be circumvented by careless processing, storing, and preserving the PUFAs. The use of n-3 PUFAs is safe if appropriate preparations and dosages are selected. Much research is needed to clarify their use under different disease conditions. The newly established clinical and nutritional facts on n-3 PUFAs will induce industry to develop food products based on this knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号