首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In the koji molds Aspergillus sojae and Aspergillus oryzae, exogenous DNA is integrated in the genome, in most cases irrespective of the sequence homology, suggesting that DNA integration occurs predominantly through a nonhomologous end joining pathway where two ku genes, namely, ku70 and ku80, play a key role. To determine the effect of ku gene disruption on the gene targeting frequency, we constructed ku70-, ku80-, and ku70–ku80-disrupted strains of A. sojae and A. oryzae. The gene targeting frequency of the tannase gene in ku70 and ku80 strains of both Aspergillus species was markedly enhanced as compared with that of the parental strains. The gene targeting frequency of the aflR and ku80 genes was also enhanced in an A. sojae ku70 background. Therefore, the koji mold strains with ku-disrupted genes will be excellent tools as hosts for efficient gene targeting.  相似文献   

5.
6.
Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated.  相似文献   

7.
Aspergillus fumigatus causes a wide range of diseases that include mycotoxicosis, allergic reactions and systematic diseases (invasive aspergillosis) with high mortality rates. In recent years, considerable progress in the genome sequencing of this fungus has been made by an international consortium, which includes the Wellcome Trust Sanger Institute (UK) and the Institute for Genome Research (USA). A tenfold whole genome shotgun sequence assembly of A. fumigatus has been made publicly available. In this study, it was attempted to identify the genes related to the phospholipid biosynthesis from the A. fumigatus genome by a gene prediction program (GlimmerM) and to reconstruct the metabolic pathway for phospholipids of A. fumigatus. Fifteen genes related to phospholipid pathway were identified in the A. fumigatus genomic sequence. The open reading frames predicted by GlimmerM showed a high amino acid sequence similarity with the other fungal phospholipid biosynthetic genes and well‐conserved functional domains. The obtained results also demonstrated that the reconstructed pathway of A. fumigatus in phospholipid biosynthesis was very similar to that of other fungi such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, and Neurospora crassa. Therefore it is postulated that the antifungal drugs targeted for the biosynthesis of phospholipids could also be effective against A. fumigatus.  相似文献   

8.
Khaldi N  Wolfe KH 《PloS one》2008,3(8):e3036
The genome sequence of Aspergillus oryzae revealed unexpectedly that this species has approximately 20% more genes than its congeneric species A. nidulans and A. fumigatus. Where did these extra genes come from? Here, we evaluate several possible causes of the elevated gene number. Many gene families are expanded in A. oryzae relative to A. nidulans and A. fumigatus, but we find no evidence of ancient whole-genome duplication or other segmental duplications, either in A. oryzae or in the common ancestor of the genus Aspergillus. We show that the presence of divergent pairs of paralogs is a feature peculiar to A. oryzae and is not shared with A. nidulans or A. fumigatus. In phylogenetic trees that include paralog pairs from A. oryzae, we frequently find that one of the genes in a pair from A. oryzae has the expected orthologous relationship with A. nidulans, A. fumigatus and other species in the subphylum Eurotiomycetes, whereas the other A. oryzae gene falls outside this clade but still within the Ascomycota. We identified 456 such gene pairs in A. oryzae. Further phylogenetic analysis did not however indicate a single consistent evolutionary origin for the divergent members of these pairs. Approximately one-third of them showed phylogenies that are suggestive of horizontal gene transfer (HGT) from Sordariomycete species, and these genes are closer together in the A. oryzae genome than expected by chance, but no unique Sordariomycete donor species was identifiable. The postulated HGTs from Sordariomycetes still leave the majority of extra A. oryzae genes unaccounted for. One possible explanation for our observations is that A. oryzae might have been the recipient of many separate HGT events from diverse donors.  相似文献   

9.
Blast, caused by Magnaporthe oryzae, is one of the most widespread and destructive diseases of rice. Breeding durable resistant cultivars (cvs) can be achieved by pyramiding of various resistance (R) genes. Pia, carried by cv. Aichi Asahi, was evaluated against 612 isolates of M. oryzae collected from 10 Chinese provinces. The Pia gene expresses weak resistance in all the provinces except for Jiangsu. Genomic position-ready marker-based linkage analysis was carried out in a mapping population consisting of 800 F2 plants derived from a cross of Aichi Asahi×Kasalath. The locus was defined in an interval of approximately 90 kb, flanked by markers A16 and A21. Four candidate genes (Pia-1, Pia-2, Pia-3, and Pia-4), all having the R gene conserved structure, were predicted in the interval using the cv. Nipponbare genomic sequence. Four candidate resistance gene (CRG) markers (A17, A25, A26, and A27), derived from the four candidates, were subjected to genotyping with the recombinants detected at the flanking markers. The first three markers completely co-segregated with the Pia locus, and the fourth was absent in the Aichi Asahi genome and disordered with the Pia locus and its flanking markers, indicating that the fourth candidate gene, Pia-4, could be excluded. Co-segregation marker-based genotyping of the three sets of differentials with known R gene genotypes revealed that the genotype of A26 (Pia-3) perfectly matched the R gene genotype of Pia, indicating that Pia-3 is the strongest candidate gene for Pia.  相似文献   

10.
Aspergillus oryzae has been utilized for over 1000 years in Japan for the production of various traditional foods, and a large number of A. oryzae strains have been isolated and/or selected for the effective fermentation of food ingredients. Characteristics of genetic alterations among the strains used are of particular interest in studies of A. oryzae. Here, we have sequenced the whole genome of an industrial fungal isolate, A. oryzae RIB326, by using a next-generation sequencing system and compared the data with those of A. oryzae RIB40, a wild-type strain sequenced in 2005. The aim of this study was to evaluate the mutation pressure on the non-syntenic blocks (NSBs) of the genome, which were previously identified through comparative genomic analysis of A. oryzae, Aspergillus fumigatus, and Aspergillus nidulans. We found that genes within the NSBs of RIB326 accumulate mutations more frequently than those within the SBs, regardless of their distance from the telomeres or of their expression level. Our findings suggest that the high mutation frequency of NSBs might contribute to maintaining the diversity of the A. oryzae genome.  相似文献   

11.
12.
13.
14.
We conducted genome sequencing of the filamentous fungus Aspergillus sojae NBRC4239 isolated from the koji used to prepare Japanese soy sauce. We used the 454 pyrosequencing technology and investigated the genome with respect to enzymes and secondary metabolites in comparison with other Aspergilli sequenced. Assembly of 454 reads generated a non-redundant sequence of 39.5-Mb possessing 13 033 putative genes and 65 scaffolds composed of 557 contigs. Of the 2847 open reading frames with Pfam domain scores of >150 found in A. sojae NBRC4239, 81.7% had a high degree of similarity with the genes of A. oryzae. Comparative analysis identified serine carboxypeptidase and aspartic protease genes unique to A. sojae NBRC4239. While A. oryzae possessed three copies of α-amyalse gene, A. sojae NBRC4239 possessed only a single copy. Comparison of 56 gene clusters for secondary metabolites between A. sojae NBRC4239 and A. oryzae revealed that 24 clusters were conserved, whereas 32 clusters differed between them that included a deletion of 18 508 bp containing mfs1, mao1, dmaT, and pks-nrps for the cyclopiazonic acid (CPA) biosynthesis, explaining the no productivity of CPA in A. sojae. The A. sojae NBRC4239 genome data will be useful to characterize functional features of the koji moulds used in Japanese industries.  相似文献   

15.
Aspergillus oryzae RIB40 has three α-amylase genes (amyA, amyB, and amyC), and secretes α-amylase abundantly. However, large amounts of endogenous secretory proteins such as α-amylase can compete with heterologous protein in the secretory pathway and decrease its production yields. In this study, we examined the effects of suppression of α-amylase on heterologous protein production in A. oryzae, using the bovine chymosin (CHY) as a reporter heterologous protein. The three α-amylase genes in A. oryzae have nearly identical DNA sequences from those promoters to the coding regions. Hence we performed silencing of α-amylase genes by RNA interference (RNAi) in the A. oryzae CHY producing strain. The silenced strains exhibited a reduction in α-amylase activity and an increase in CHY production in the culture medium. This result suggests that suppression of α-amylase is effective in heterologous protein production in A. oryzae.  相似文献   

16.
17.
A gene encoding a pyranose 2-oxidase (POx; pyranose/oxygen 2-oxidoreductase; glucose 2-oxidase; EC 1.1.3.10) was identified in the genome of the ascomycete Aspergillus nidulans. Attempts to isolate POx directly from A. nidulans cultures or to homologously overexpress the native POx (under control of the constitutive gpdA promoter) in A. nidulans were unsuccessful. cDNA encoding POx was synthesized from mRNA and expressed in Escherichia coli, and the enzyme was subsequently purified and characterized. A putative pyranose 2-oxidase-encoding gene was also identified in the genome of Aspergillus oryzae. The coding sequence was synthetically produced and was also expressed in E. coli. Both purified enzymes were shown to be flavoproteins consisting of subunits of 65 kDa. The A. nidulans enzyme was biochemically similar to POx reported in literature. From all substrates, the highest catalytic efficiency was found with D-glucose. In addition, the enzyme catalyzes the two-electron reduction of 1,4-benzoquinone, several substituted benzoquinones and 2,6-dichloroindophenol. As judged by the catalytic efficiencies (k cat/k m), some of these quinone electron acceptors are better substrates for pyranose oxidase than oxygen. The enzyme from A. oryzae was physically similar but showed lower kinetic constants compared to the enzyme from A. nidulans. Distinct differences in the stability of the two enzymes may be attributed to a deletion and an insertion in the sequence, respectively.  相似文献   

18.
Free fatty acids are useful as source materials for the production of biodiesel fuel and various chemicals such as pharmaceuticals and dietary supplements. Previously, we attained a 9.2-fold increase in free fatty acid productivity by disrupting a predicted acyl-CoA synthetase gene (faaA, AO090011000642) in Aspergillus oryzae. In this study, we achieved further increase in the productivity by overexpressing a predicted transketolase gene of the pentose phosphate pathway in the faaA disruptant. The A. oryzae genome is predicted to have three transketolase genes and overexpression of AO090023000345, one of the three genes, resulted in phenotypic change and further increase (corresponding to an increased production of 0.38 mmol/g dry cell weight) in free fatty acids at 1.4-fold compared to the faaA disruptant. Additionally, the biomass of hyphae increased at 1.2-fold by the overexpression. As a result, free fatty acid production yield per liter of liquid culture increased at 1.7-fold by the overexpression.  相似文献   

19.
程雯  蒲桂洪  牛国清  邹祥 《微生物学报》2021,61(12):3977-3990
[目的] 分析荒漠拟孢囊菌CCTCC M2020063中A82846B合成的代谢途径和关键基因。[方法] 使用Illumina二代测序和PacBio三代测序技术对荒漠拟孢囊菌CCTCC M2020063进行全基因组测序,利用Glimmer预测编码序列,使用HPLC和LCMS鉴定次级代谢产物,使用antiSMASH 5.0软件预测次级代谢产物合成基因簇。利用Geneious软件对A82846B合成相关基因进行分析,对其中的mbtH类基因着重分析。[结果] 本实验菌株鉴定为荒漠拟孢囊菌(Kibdelosporangium aridum),基因组中有一条线性染色体,无质粒,序列全长12475688 bp,GC含量为66.27%,有11900个开放阅读框,共有47个基因簇。该菌株具有合成A82846B的能力,且生物合成相关基因位于Cluster32,包含33个基因,mbtH类基因gene07864的过表达促进A82846的合成,提升了26.42%,卤化酶基因为gene07859,与万古霉素、巴利霉素的卤化酶相似度较高。[结论] 本研究对荒漠拟孢囊菌CCTCC M2020063进行了基因组序列分析,获得了A82846B生物合成相关的功能基因信息,为A82846B的代谢途径和工程改造提供了强有力的基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号