首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tea polyphenols, e.g., (-)-epigallocatechin-3-O-(3-O-methyl gallate (EGCG3”Me), (-)-epigallocatechin-3-O-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin-3-O-gallate (ECG), and (-)-epicatechin (EC), are believed to be responsible for the beneficial effects of tea. ‘Benifuuki’, a tea (Camellia sinensis L.) cultivar grown in Japan, is rich in the anti-allergic molecule epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3”Me). Pulverized Benifuuki green tea powder (BGP) is more widely distributed than leaf tea in Japan. Japanese people mix their pulverized tea with water directly, whereas it is common to drink leaf tea after extraction. However, few studies of the effects of BGP particle size on polyphenol bioavailability have been performed. This study was conducted to investigate the absorption of catechins in rats after the intragastric administration of Benifuuki green tea. Therefore, we assessed the plasma concentrations of catechins following the ingestion of BGP with different mean particle sizes (2.86, 18.6, and 76.1 μm) or Benifuuki green tea infusion (BGI) as a control in rats. The bioavailabilities of EGCG3”Me, EGCG, ECG, EGC, and EC were analyzed after the oral administration of a single dose of Benifuuki green tea (125 mg/rat) to rats. The plasma concentrations of tea catechins were determined by HPLC analysis combined with of electrochemical detection (ECD) using a coulometric array. The AUC (area under the drug concentration versus time curve; min μg/mL) of ester-type catechins (EGCG3”Me, EGCG, and ECG) for the BGP 2.86 μm were significantly higher than those in the infusion and 18.6 and 76.1 μm BGP groups, but the AUC of free-type catechins (EGC and EC) showed no differences between these groups. Regarding the peak plasma level of EGCG3”Me adjusted for intake, BGP 2.86 μm and BGI showed higher values than the BGP 18.6 and 76.1 μm groups, and the peak plasma levels of the other catechins displayed the same tendency. The present study demonstrates that the bioavailability of ester-type catechins (EGCG and ECG) can be improved by reducing the particle size of green tea, but the plasma level of EGCG3”Me in the BGI group was similar to that in the BGP 2.86 μm group. This result suggests that drinking Benifuuki green tea with a particle size of around 2 μm would deliver the anti-allergic EGCG3”Me and the anti-oxidant EGCG efficiently.  相似文献   

2.
3.
Here, we investigated the structure-activity relationship of major green tea catechins and their corresponding epimers on cell-surface binding and inhibitory effect on histamine release. Galloylated catechins; (−)-epigallocatechin-3-O-gallate (EGCG), (−)-gallocatechin-3-O-gallate (GCG), (−)-epicatechin-3-O-gallate (ECG), and (−)-catechin-3-O-gallate (CG) showed the cell-surface binding to the human basophilic KU812 cells by surface plasmon resonance analysis, but their non-galloylated forms did not. Binding activities of pyrogallol-type catechins (EGCG and GCG) were higher than those of catechol-type catechins (ECG and CG). These patterns were also observed in their inhibitory effects on histamine release. Previously, we have reported that biological activities of EGCG are mediated through the binding to the cell-surface 67 kDa laminin receptor (67LR). Downregulation of 67LR expression caused a reduction of both activities of galloylated catechins. These results suggest that both the galloyl moiety and the B-ring hydroxylation pattern contribute to the exertion of biological activities of tea catechins and their 67LR-dependencies.  相似文献   

4.
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by a block in differentiation and uncontrolled proliferation. FLT3 is a commonly mutated gene found in AML patients. In clinical trials, the presence of a FLT3-ITD mutation significantly correlates with an increased risk of relapse and dismal overall survival. Therefore, activated FLT3 is a promising molecular target for AML therapies. In this study, we have shown that green tea polyphenols including (−)-epigallocatechin-3-gallate (EGCG), (−)-epigallocatechin (EGC), and (−)-epicatechin-3-gallate (ECG) suppress the proliferation of AML cells. Interestingly, EGCG, EGC and ECG showed the inhibition of FLT3 expression in cell lines harboring FLT3 mutations. In the THP-1 cells harboring FLT3 wild-type, EGCG showed the suppression of cell proliferation but did not suppress the expression of FLT3 even at the concentration that suppress 100% cell proliferation. Moreover, EGCG-, EGC-and ECG-treated cells showed the suppression of MAPK, AKT and STAT5 phosphorylation. Altogether, we suggest that green tea polyphenols could serve as reagents for treatment or prevention of leukemia harboring FLT3 mutations.  相似文献   

5.
Various low-molecular-weight phytochemicals in green tea (Camellia sinensis L.), especially (–)-epigallocatechin-3-O-gallate (EGCG), are known to be involved in health promotion and disease risk reduction. However, the underlying mechanism has remained elusive because of the absence of an analytical technique that can easily detect the precise behavior of such a small molecule. Recently, we have identified a cell-surface EGCG-sensing receptor and the related signaling molecules that control the physiological functions of EGCG. We also developed a novel in situ label-free imaging technique for visualizing spatially resolved biotransformations based on simultaneous mapping of EGCG and its phase II metabolites. Furthermore, we established a chemometric method capable of evaluating the functionality of multicomponent green tea extracts by focusing on their compositional balances. This review highlights our proposed small molecule-sensing techniques for detecting the complex behavior of green tea components and linking such information to an enhanced understanding of green tea functionality.  相似文献   

6.
Data are presented showing the relationship of flavanolic constituents to tea leaves to the position in plucked shoots and to the stages of growth at various seasons. The results indicate that with the development of tea leaves, there is an increase of (–)-epigallocatechin and decrease of (–)-epigallocatechin gallate and (–)-epicatechin gallate. This suggested that past common data on the variation of tannin content is not always sufficient for such α subject.  相似文献   

7.
We purified several hundred mgs of four major theaflavins (theaflavin, theaflavin-3-O-gallate, theaflavin-3′-O-gallate, and theaflavin-3,3′-O-digallate). Among the 25 hTAS2Rs expressed in HEK293T cells, hTAS2R39 and hTAS2R14 were activated by theaflavins. Both hTAS2R39 and hTAS2R14 responded to theaflavin-3′-O-gallate. In addition, hTAS2R39 was activated by theaflavin and theaflavin-3,3′-O-gallate, but not by theaflavin-3-O-gallate. In contrast, hTAS2R14 responded to theaflavin-3-O-gallate.  相似文献   

8.
Flavan-3-ol derivatives are common plant-derived bioactive compounds. In particular, (–)-epigallocatechin-3-O-gallate shows various moderate biological activities without severe toxicity, and its health-promoting effects have been widely studied because it is a main ingredient in green tea and is commercially available at low cost. Although various biologically active flavan-3-ol derivatives are present as minor constituents in plants as well as in green tea, their biological activities have yet to be revealed, mainly due to their relative unavailability. Here, I outline the major factors contributing to the complexity of functionality studies of flavan-3-ol derivatives, including proanthocyanidins and oligomeric flavan-3-ols. I emphasize the importance of conducting structure-activity relationship studies using synthesized flavan-3-ol derivatives that are difficult to obtain from plant extracts in pure form to overcome this challenge. Further discovery of these minor constituents showing strong biological activities is expected to produce useful information for the development of functional health foods.  相似文献   

9.
An enzyme catalyzing the methylation of phenolic hydroxyl groups in polyphenols was identified from mycelial cultures of edible mushrooms to synthesize O-methylated polyphenols. Enzyme activity was measured to assess whether methyl groups were introduced into (?)-epigallocatechin-3-O-gallate (EGCG) using SAM as a methyl donor, and (?)-epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3″Me), (?)-epigallocatechin-3-O-(4-O-methyl)-gallate (EGCG4″Me), and (?)-epigallocatechin-3-O-(3,5-O-dimethyl)-gallate (EGCG3″,5″diMe) peaks were detected using crude enzyme preparations from mycelial cultures of Flammulina velutipes. The enzyme was purified using chromatographic and two-dimensional electrophoresis. The purified enzyme was subsequently analyzed on the basis of the partial amino acid sequence using LC–MS/MS. Partial amino acid sequencing identified the 17 and 12 amino acid sequences, VLEVGTLGGYSTTWLAR and TGGIIIVDNVVR. In database searches, these sequences showed high identity with O-methyltransferases from other mushroom species and completely matched 11 of 17 and 9 of 12 amino acids from five other mushroom O-methyltransferases.  相似文献   

10.
The effects of teas and related components on the proliferation and invasion of cancer cells were examined by employing both in vitro proliferation and invasion assay systems. Powdered green, oolong and black tea extracts dose-dependently inhibited proliferation and invasion of a rat ascites hepatoma cell line of AH109A but did not affect the proliferation of the normal mesentery-derived mesothelial cells (M-cells) isolated from rats; higher concentrations of powdered oolong and black teas could restrain the proliferation of another tumor cell line of L929. The AH109A cells were found to penetrate underneath the monolayer of M-cells in the presence of 10% calf serum. When each rat serum obtained at 0.5, 1, 2, 3 and 5 h after oral intubation of each tea extract was added to the culture media instead of calf serum at a concentration of 10%, both the invasion and proliferation of AH109A were significantly suppressed. These ex vivo results suggest the potential bioavailability of effective tea components in rats. Furthermore, (–)-epigallocatechin gallate, (–)-epicatechin gallate and (–)-epigallocatechin from green tea as well as the mixture of theaflavin and theaflavin gallates from black tea were shown to be the most effective components against the invasion and proliferation of AH109A. These results show that the inhibitory effects of the teas and related components against AH109A cells are due to the cell-specific and higher sensitivity of the cell line to tea components. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Flavanols, a class of polyphenols present in certain plant-based foods, have received increasing attention for their putative anticancer activity. In vitro and in vivo studies, which have compared the effectiveness of various monomer flavanols, indicate that the presence of a galloyl residue on the 3 position on the C-ring enhances the cytotoxicity of these compounds. Procyanidins, oligomerized flavanols, have been reported to be more cytotoxic than monomer flavanols in a variety of human cancer cell lines. Given the above, we evaluated the potential anticancer properties of dimer procyanidins that contain galloyl groups. Specifically, the cytotoxicity of synthetic digalloyl dimer B1 and B2 esters {[3-O-galloyl]-(−)-epicatechin-(4β,8)-(+)-catechin-3-O-gallate (DGB1) and [3-O-galloyl]-(−)-epicatechin-(4β,8)-(+)-epicatechin-3-O-gallate (DGB2), respectively} were tested in a number of in vitro models. DGB1 produced significant cytotoxicity in a number of human cancer cell lines evaluated by three independent methods: ATP content, MTT and MTS assays. For the three most sensitive cell lines, exposure to DGB1 and DGB2 for 24, 48 or 72 h was associated with a reduction in cell number and an inhibition of cell proliferation. Digalloyl dimers exerted significantly higher cytotoxic effects than the structurally related flavanols, (−)-epicatechin, (+)-catechin, (−)-epicatechin gallate, (−)-epigallocatechin gallate, (−)-catechin gallate and dimer B1 and B2. These results support the concept that the incorporation of galloyl groups and the oligomerization of flavanols enhances the cytotoxic effects of typical monomer flavanols. The therapeutic value of these compounds and their derivative forms as anticancer agents merits further investigation in whole animal models.  相似文献   

12.
13.
14.
Tea catechins, (–)-epigallocatechin-3-gallate (EGCg) and (–)-epigallocatechin (EGC), have been reported to suppress oxidation of plasma low density lipoprotein (LDL) in vitro. If dietary catechins can be efficiently incorporated into human blood plasma, anti-atherosclerotic effects in preventing oxidative modification of LDL would be expected. In this study, a newly developed chemiluminescence detection-high pressure liquid chromatography (CL-HPLC) method for measuring plasma catechins was used and the incorporation of EGCg and EGC into human plasma was investigated. Healthy subjects orally ingested 3, 5, or 7 capsules of green tea extract (corresponding to 225, 375, and 525 mg EGCg and 7.5, 12.5, and 17.5 mg EGC, respectively). The plasma EGCg and EGC concentrations before the administration were all below the detection limit (< 2 pmol/ml), but 90 min after, significantly and dose-dependently increased to 657, 4300, and 4410 pmol EGCg/ml, and 35, 144, and 255 pmol EGC/ml, in the subjects who received 3, 5, and 7 capsules, respectively. Both EGCg and EGC levels detected in plasma corresponded to 0.2–2.0% of the ingested amount. Catechin intake had no effect on the basal level of endogenous antioxidants (α-tocopherol, β-carotene, and lycopene) or of lipids in plasma. These results suggested that drinking green tea daily would contribute to maintain plasma catechin levels sufficient to exert antioxidant activity against oxidative modification of lipoproteins in blood circulation systems.  相似文献   

15.
Suspension cultures of Vitis vinifera were found to produce catechins and stilbenes. When cells were grown in a medium inducing polyphenol synthesis, (−)-epicatechin-3-O-gallate, dimeric procyanidin B-2 3′-O-gallate and two resveratrol diglucosides were isolated, together with a new natural compound that was identified as cis-resveratrol-3,4′-O-β-diglucoside by spectroscopical methods.  相似文献   

16.
(−)-Epigallocatechin-3-O-gallate (EGCG), a polyphenol in green tea, induces apoptosis in acute myeloid leukemia (AML) cells without affecting normal cells. In this study, we observed that cGMP acts as a cell death mediator of the EGCG-induced anti-AML effect through acid sphingomyelinase activation. EGCG activated the Akt/eNOS axis, a well-known mechanism in vascular cGMP upregulation. We also observed that a major cGMP negative regulator, phosphodiesterase 5, was overexpressed in AML cells, and PDE5 inhibitor, an anti-erectile dysfunction drug, synergistically enhanced the anti-AML effect of EGCG. This combination regimen killed AML cells via overexpressed 67-kDa laminin receptors.  相似文献   

17.
Chung LY  Cheung TC  Kong SK  Fung KP  Choy YM  Chan ZY  Kwok TT 《Life sciences》2001,68(10):1207-1214
Green tea catechins (GTCs) including (-)-epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG) and (-)-epicatechin (EC) were shown to suppress cell growth and induce apoptosis in various cell systems in addition to their chemo-preventive effect. In this study, except EC which was inactive, green tea extract (TE) and other 3 GTCs were found to suppress the growth and induce apoptosis in human prostate cancer DU145 cells largely through an increase in reactive oxygen species formation and mitochondrial depolarization. The conclusion was supported by the fact that the profiles for different GTCs in growth suppression, apoptosis induction, ROS formation and mitochondrial depolarization are in a similar order, i.e. ECG > EGCG > EGC > EC. Although the molecular mechanisms are still not clear, apoptosis induced by GTCs is not related to the members of BCL-2 family as EGCG did not alter the expression of BCL-2, BCL-X(L) and BAD in DU145 cells.  相似文献   

18.
Epidemiological studies show a dose-dependent relationship between green tea consumption and reduced risk for type 2 diabetes and cardiovascular disease. Bioactive compounds in green tea including the polyphenol epigallocatechin 3-gallate (EGCG) have insulin-mimetic actions on glucose metabolism and vascular function in isolated cell culture studies. The aim of this study is to explore acute vascular and metabolic actions of EGCG in skeletal muscle of Sprague–Dawley rats. Direct vascular and metabolic actions of EGCG were investigated using surgically isolated constant-flow perfused rat hindlimbs. EGCG infused at 0.1, 1, 10 and 100 μM in 15 min step-wise increments caused dose-dependent vasodilation in 5-hydroxytryptamine pre-constricted hindlimbs. This response was not impaired by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin or the AMP-kinase inhibitor Compound C. The nitric oxide synthase (NOS) inhibitor NG-Nitro-l-Arginine Methyl Ester (L-NAME) completely blocked EGCG-mediated vasodilation at 0.1–10 μM, but not at 100 μM. EGCG at 10 μM did not alter muscle glucose uptake nor did it augment insulin-stimulated muscle glucose uptake. The acute metabolic and vascular actions of 10 μM EGCG in vivo were investigated in anaesthetised rats during a hyperinsulinemic-euglycemic clamp (10 mU min−1 kg−1 insulin). EGCG and insulin both stimulated comparable increases in muscle microvascular blood flow without an additive effect. EGCG-mediated microvascular action occurred without altering whole body or muscle glucose uptake. We concluded that EGCG has direct NOS-dependent vasodilator actions in skeletal muscle that do not acutely alter muscle glucose uptake or enhance the vascular and metabolic actions of insulin in healthy rats.  相似文献   

19.
Intracortical injections of iron ions have been shown to induce recurrent seizures and epileptic discharges in the EEG. (–)-Epigallocatechin (EGC) and (–)-epigallocatecatechin-3-O-gallate (EGCG), isolated from green tea leaves, have been reported to prevent or diminish the occurrence of epileptic discharges induced by iron ions, and to inhibit catechol-O-methyltransferase. Iron ions significantly increased DOPAC and HVA levels in the intrastriatal perfusate 140 and 180 minutes, respectively, after injection. EGC and EGCG inhibited the increases induced by iron ions. Furthermore, EGCG decreased the HVA level in the perfusate 200 minutes after injection whether or not iron ions were injected. Iron ions had no effect on the 5-HIAA level, and EGC and EGCG raised it. These results suggest that formation of an epileptic focus induced by iron ions might be accompanied by activation of dopaminergic neurons, and that EGC and EGCG inhibit that hyperactivity.  相似文献   

20.
Aims: To measure antibacterial activity of the semi-synthetic flavonoid 3-O-octanoyl-(–)-epicatechin and investigate the mechanism of action. Methods and Results: MICs determined by the broth microdilution method were 50 μg ml−1 for β-lactam sensitive and resistant Staphylococcus aureus, and 100 μg ml−1 for vancomycin sensitive and resistant enterococci. In time-kill studies, 100 μg ml−1 3-O-octanoyl-(–)-epicatechin reduced colony forming unit numbers of antibiotic sensitive and methicillin-resistant Staph. aureus below detectable levels within 120 min. Bacterial aggregation was not observed when cells exposed to 3-O-octanoyl-(–)-epicatechin were examined by light microscopy. It was also shown that 50 μg ml−1 3-O-octanoyl-(–)-epicatechin is capable of reducing colony forming unit numbers of high cell density Staph. aureus populations by 80-fold within 60 min incubation, and inducing leakage of 50% of their internal potassium within just 10 min. Conclusions: 3-O-Octanoyl-(–)-epicatechin is active against Gram-positive bacteria, has bactericidal activity against both antibiotic sensitive and resistant strains, and is likely to exert its primary antibacterial effect by damaging the cytoplasmic membrane. Significance and Impact of the Study: 3-O-Octanoyl-(–)-epicatechin has significant antibacterial activity and additional structural modification and/or formulation studies may allow this to be potentiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号