首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence and chemical nature of the cross-links between cellulose microfibrils in outer epidermal cell walls in Pisum sativum cv. Alaska was investigated by rapid-freezing and deep-etching techniques coupled with chemical and enzymatic treatments. The cell wall in the elongating region of epidermal cells was characterized by the absence of the cross-links, while in the elongated region, the cell wall was characterized by the presence of cross-links. The cross-links remained in the cell wall of the elongated region after treatment with SDS electrophoresis sample buffer and treatment with 4% potassium hydroxide. After treatment with endo-1,4-beta-glucanase, which fragments xyloglucan, the cross-links were remarkably reduced from the cell wall of the elongated region. The endoglucanase treatment also reduced immunogold labeling of xyloglucan in the cell wall. The endoglucanase hydrolysate from the cell wall fraction of the elongated region gave spots of oligosaccharides in thin layer chromatography, which were identical to the spots of xyloglucan oligosaccharides produced by xyloglucanase from both the cell wall fraction and tamarind xyloglucan. These results indicate that the cross-links are made of xyloglucan. We discussed the possibility of cross-links involved in the control of mechanical properties of the cell wall.  相似文献   

2.
Xyloglucan oligosaccharides from cotton cell walls and tamarind seeds were derivatized with 2-aminopyridine and subsequently separated by reversed-phase chromatography (r.p.c.) using an octadecylsilyl silica stationary phase and aqueous-organic eluents with 0.01% (v/v) trifluoroacetic acid. The chromatographic behavior of the 2-pyridylamino derivatives of xyloglucan oligosaccharides was examined under a wide range of elution conditions, including gradient steepness and shape, initial acetonitrile concentration in the eluent, and pore size of the r.p.c. packings. Relatively steep acetonitrile gradients resulted in poor resolution of the different xyloglucan fragments, which is believed to be the result of acetonitrile-induced conformational changes. Under these circumstances the elution order of the derivatized xyloglucan oligosaccharides was such that the smaller fragments eluted from the column before the larger ones. R.p.c. packing with a 70-A pore size necessitated relatively high acetonitrile concentration in the eluent when compared with 300-A stationary phase. The r.p.c. mapping of 2-pyridylamino derivatives of xyloglucan oligosaccharides was best achieved when both a wide-pore octadecyl-silyl silica stationary phase and a shallow gradient with consecutive linear segments of increasing acetonitrile concentration in the eluent were employed. This combination yielded rapid r.p.c. maps of the xyloglucan fragments from different sources with high separation efficiencies and concomitantly high resolution. The effects of the nature of the sugar residues in the xyloglucan oligomers and their degree of branching on r.p.c. retention and selectivity are also highlighted.  相似文献   

3.
A strategy for the modification of cellulose fiber surfaces was developed that used the ability of Candida antarctica lipase B (CALB) to acylate carbohydrates with high regioselectivity, combined with the transglycosylating activity of the Populus tremula x P. tremuloides xyloglucan endotransglycosylase 16A (PttXET16A). Xyloglucan oligosaccharides (XGOs) prepared from tamarind xyloglucan were acylated with CALB as a catalyst and vinyl stearate or gamma-thiobutyrolactone as acyl donors to produce carbohydrate molecules with hydrophobic alkyl chains or reactive sulfhydryl groups, respectively. The modified XGOs were shown to act as glycosyl acceptors in the transglycosylation reaction catalyzed by PttXET16A and could therefore be incorporated into high M(r) xyloglucan chains. The resulting xyloglucan molecules exhibited a high affinity for cellulose surfaces, which enabled the essentially irreversible introduction of fatty acid esters or thiol groups to cellulose fibers.  相似文献   

4.
Molecular interactions between wall polysaccharides, which include cellulose and a range of noncellulosic polysaccharides such as xyloglucans and (1,3;1,4)-beta-D-glucans, are fundamental to cell wall properties. These interactions have been assumed to be noncovalent in nature in most cases. Here we show that a highly purified barley xyloglucan xyloglucosyl transferase HvXET5 (EC 2.4.1.207), a member of the GH16 group of glycoside hydrolases, catalyzes the in vitro formation of covalent linkages between xyloglucans and cellulosic substrates and between xyloglucans and (1,3;1,4)-beta-D-glucans. The rate of covalent bond formation catalyzed by HvXET5 with hydroxyethylcellulose (HEC) is comparable with that on tamarind xyloglucan, whereas that with (1,3; 1,4)-beta-D-glucan is significant but slower. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analyses showed that oligosaccharides released from the fluorescent HEC:xyloglucan conjugate by a specific (1,4)-beta-D-glucan endohydrolase consisted of xyloglucan substrate with one, two, or three glucosyl residues attached. Ancillary peaks contained hydroxyethyl substituents (m/z 45) and confirmed that the parent material consisted of HEC covalently linked with xyloglucan. Similarly, partial hydrolysis of the (1,3;1,4)-beta-D-glucan:xyloglucan conjugate by a specific (1,3;1,4)-beta-D-glucan endohydrolase revealed the presence of a series of fluorescent oligosaccharides that consisted of the fluorescent xyloglucan acceptor substrate linked covalently with 2-6 glucosyl residues. These findings raise the possibility that xyloglucan endo-transglucosylases could link different polysaccharides in vivo and hence influence cell wall strength, flexibility, and porosity.  相似文献   

5.
The action on tamarind seed xyloglucan of the pure, xyloglucan-specific endo-(1→4)-β-D-glucanase from nasturtium (Tropaeolum majus L.) cotyledons has been compared with that of a pure endo-(1→4)-β-D-glucanase (‘cellulase’) of fungal origin. The fungal enzyme hydrolysed the polysaccharide almost completely to a mixture of the four xyloglucan oligosaccharides: Exhaustive digestion with the nasturtium enzyme gave the same four oligosaccharides plus large amounts of higher oligosaccharides and higher-polymeric material. Five of the product oligosaccharides (D,E,F,G,H) were purified and shown to be dimers of oligosaccharides A to C. D (glc8xyl6) had the structure A→A, H (glc8xyl6gal4) was C→C, whereas E (glc8xyl6gal), F (glc8xyl6gal2) and G (glc8xyl6gal3) were mixtures of structural isomers with the appropriate composition. For example, F contained B2→B2 (30%), A→C (30%), C→A (20%), B2B1 (15%) and others (about 5%). At moderate concentration (about 3 mM) oligosaccharides D to H were not further hydrolysed by the nasturtium enzyme, but underwent transglycosylation to give oligosaccharides from the group A, B, C, plus higher oligomeric structures. At lower substrate concentrations, hydrolysis was observed. Similarly, tamarind seed xyloglucan was hydrolysed to a greater extent at lower concentrations. It is concluded that the xyloglucan-specific nasturtium-seed endo-(1→4)-β-D-glucanase has a powerful xyloglucan-xyloglucan endo-transglycosylase activity in addition to its known xyloglucan-specific hydrolytic action. It would be more appropriately classified as a xyloglucan endo-transglycosylase. The action and specificity of the nasturtium enzyme are discussed in the context of xyloglucan metabolism in the cell walls of seeds and in other plant tissues.  相似文献   

6.
The basidiomycete Phanerochaete chrysosporium produces xyloglucanase Xgh74B, which has the glycoside hydrolase (GH) family 74 catalytic domain and family 1 carbohydrate-binding module, in cellulose-grown culture. The recombinant enzyme, which was heterologously expressed in the yeast Pichia pastoris, had high hydrolytic activity toward xyloglucan from tamarind seed (TXG), whereas other beta-1,4-glucans examined were poor substrates for the enzyme. The existence of the carbohydrate-binding module significantly affects adsorption of the enzyme on crystalline cellulose, but has no effect on the hydrolysis of xyloglucan, indicating that the domain may contribute to the localization of the enzyme. HPLC and MALDI-TOF MS analyses of the hydrolytic products of TXG clearly indicated that Xgh74B hydrolyzes the glycosidic bonds of unbranched glucose residues, like other GH family 74 xyloglucanases. However, viscometric analysis suggested that Xgh74B hydrolyzes TXG in a different manner from other known GH family 74 xyloglucanases. Gel permeation chromatography showed that Xgh74B initially produced oligosaccharides of degree of polymerization (DP) 16-18, and these oligosaccharides were then slowly hydrolyzed to final products of DP 7-9. In addition, the ratio of oligosaccharides of DP 7-9 versus those of DP 16-18 was dependent upon the pH of the reaction mixture, indicating that the affinity of Xgh74B for the oligosaccharides of DP 16-18 is affected by the ionic environment at the active site.  相似文献   

7.
Specific xyloglucanases as a new class of polysaccharide-degrading enzymes   总被引:4,自引:0,他引:4  
Three specific xyloglucanases (XGs) were isolated from Aspergillus japonicus (32 kDa, pI 2.8), Chrysosporium lucknowense (78 kDa, pI 3.8) and Trichoderma reesei (75-105 kDa, pI 4.1-4.3). The characteristic feature of these enzymes was their high specific activity toward tamarind xyloglucan, whereas the activity against carboxymethylcellulose (CMC) and barley beta-glucan was absent or very low. Peptide mass fingerprinting using MALDI-TOF mass spectrometry showed that the T. reesei XG represents Cel74A, whose gene has been discovered recently (GenBank accession no. AY281371 ), but the enzyme has not been characterized and described elsewhere. Tryptic peptides from A. japonicus and C. lucknowense xyloglucanases did not show any identity to those from known glycoside hydrolases. All enzymes produced XXXG, XXLG/XLXG and XLLG oligosaccharides as the end products of xyloglucan hydrolysis. A. japonicus XG displayed an endo-type of attack on the polymeric substrate, while the mode of action of two other xyloglucanases was similar to the exo-type, when oligosaccharides containing four glucose residues in the main chain were split off the ends of xyloglucan molecules. These results together with growing literature data allow concluding that specific xyloglucanases may represent a new class of glycoside hydrolases, which are different from regular endo-1,4-beta-glucanases.  相似文献   

8.
Two xyloglucan-specific endo-beta-1,4-glucanases (xyloglucanases [XEGs]), XEG5 and XEG74, with molecular masses of 40 kDa and 105 kDa, respectively, were isolated from the gram-positive bacterium Paenibacillus sp. strain KM21, which degrades tamarind seed xyloglucan. The genes encoding these XEGs were cloned and sequenced. Based on their amino acid sequences, the catalytic domains of XEG5 and XEG74 were classified in the glycoside hydrolase families 5 and 74, respectively. XEG5 is the first xyloglucanase belonging to glycoside hydrolase family 5. XEG5 lacks a carbohydrate-binding module, while XEG74 has an X2 module and a family 3 type carbohydrate-binding module at its C terminus. The two XEGs were expressed in Escherichia coli, and recombinant forms of the enzymes were purified and characterized. Both XEGs had endoglucanase active only toward xyloglucan and not toward Avicel, carboxymethylcellulose, barley beta-1,3/1,4-glucan, or xylan. XEG5 is a typical endo-type enzyme that randomly cleaves the xyloglucan main chain, while XEG74 has dual endo- and exo-mode activities or processive endo-mode activity. XEG5 digested the xyloglucan oligosaccharide XXXGXXXG to produce XXXG, whereas XEG74 digestion of XXXGXXXG resulted in XXX, XXXG, and GXXXG, suggesting that this enzyme cleaves the glycosidic bond of unbranched Glc residues. Analyses using various oligosaccharide structures revealed that unique structures of xyloglucan oligosaccharides can be prepared with XEG74.  相似文献   

9.
GDP-fucose:xyloglucan 1,2-alpha-L-fucosyltransferase from pea (Pisum sativum) epicotyl microsomal membranes was readily solubilized by extraction with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps). When using GDP-[14C]fucose as fucosyl donor and tamarind xyloglucan (XG) as acceptor, maximum activation was observed at 0.3% (w/v) Chaps and the highest yield of solubilized activity at 0.4%. The reaction product was hydrolyzed by Trichoderma cellulase to yield labeled oligosaccharides that peaked on gel permeation chromatography at the same elution volume as pea XG nona- and decasaccharide subunits. The apparent Km for fucosyl transfer to tamarind XG by the membrane-bound or solubilized enzyme was about 80 microM GDP-fucose. This was 10 times the apparent Km for fucosyl transfer to endogenous pea nascent XG. Optimum activity was between pH 6 and 7, and the isoelectric point was close to pH 4.8. The solubilized enzyme showed no requirement for, or stimulation by, added cations or phospholipids, and was stable for several months at -70 degrees C. Solubilization and gel permeation chromatography on columns of Sepharose CL-6B enriched the specific activity of the enzyme by about 20-fold relative to microsomes. Activity fractionated on columns of CL-6B with an apparent molecular weight of 150 kDa. The solubilized fucosyltransferase was electrophoresed on nondenaturing polyacrylamide slab gels containing 0.02% (w/v) tamarind XG, and its activity located by incubation in GDP-[14C]fucose, washing, and autoradiographing the gel. A single band of labeled reaction product appeared with an apparent molecular weight of 150 kDa.  相似文献   

10.
Fucosylation of exogenous xyloglucans by pea microsomal membranes   总被引:1,自引:0,他引:1  
Microsomal membrane preparations from growing regions of etiolated pea stems catalyzed the transfer of [14C]fucosyl units from GDP-[U-14C]-L-fucose into exogenously added xyloglucan acceptors, as well as into endogenous xyloglucan. The transfer was more effective using nonfucosylated tamarind seed xyloglucan than with pea wall xyloglucan in which almost all galactose units are already fucosylated. Hydrolysis of products by endo-1,4-beta-D-glucanase yielded in each case radioactive nonasaccharide as the main fucosylated product. UDP-galactose enhanced the fucosylation of endogenous primer but it had little effect on fucosyl transfer to exogenously added xyloglucans. Low-molecular-weight nonfucosylated oligosaccharide fragments up to the octasaccharide Glc4Xyl3Gal (obtained by endoglucanase action on tamarind seed xyloglucan) were ineffectual as fucosyl acceptors but inhibited the fucosylation of endogenous as well as of added xyloglucan. With octasaccharide, the inhibition was competitive in relation to the xyloglucan acceptor (Ki = 70 microM) and noncompetitive in relation to the donor GDP-fucose (Ki = 210 microM). It is concluded that fucosyltransferase acts independently and in a noncoordinated manner from other glycosyltransferases that are required to synthesize xyloglucan. Its active site recognizes a fragment longer than the galactosylated octasaccharide unit before transfucosylation will ensue.  相似文献   

11.
In the post-source decay (PSD) fragment spectrum of a reduced xyloglucan heptasaccharide (XXXGol) from tamarind seeds, eleven sodium-adduct fragment ions and a precursor ion [M + Na]+ were clearly observed by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Each fragment ion interval corresponded to the absence of unhydroxylose, unhydroglucose, and glucitol residues, indicating that PSD fragmentation cleavage in the sugar compound occurred only at glycosidic linkages close to the oxygen atom of saccharide ring members, and not in inner sugar ring bonds. The PSD fragment ions were classified into two series, one involving the reducing end and the other involving the non-reducing end. Structural information from both the reducing and non-reducing ends could therefore be simultaneously obtained from the measurement of the positive ion mode. Almost all the fragment ions from species larger than trisaccharide residues could be detected in this PSD fragment experiment. Such fragmentation information will enable the structural determination of xyloglucan oligosaccharides.  相似文献   

12.
Microsomal membranes from growing tissue of pea (Pisum sativum L.) epicotyls were incubated with the substrate UDP-[14C]galactose (Gal) with or without tamarind seed xyloglucan (XG) as a potential galactosyl acceptor. Added tamarind seed XG enhanced incorporation of [14C]Gal into high-molecular-weight products (eluted from columns of Sepharose CL-6B in the void volume) that were trichloroacetic acid-soluble but insoluble in 67% ethanol. These products were hydrolyzed by cellulase to fragments comparable in size to XG subunit oligosaccharides. XG-dependent galactosyltransferase activity could be solubilized, along with XG fucosyltransferase, by the detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate. When this enzyme was incubated with tamarind (Tamarindus indica L.) seed XG or nasturtium (Tropaeolum majus L.) seed XG that had been partially degalactosylated with an XG-specific beta-galactosidase, the rates of Gal transfer increased and fucose transfer decreased compared with controls with native XG. The reaction products were hydrolyzed by cellulase to 14C fragments that were analyzed by gel-filtration and high-performance liquid chromatography fractionation with pulsed amperometric detection. The major components were XG subunits, namely one of the two possible monogalactosyl octasaccharides (-XXLG-) and digalactosyl nonasaccharide (-XLLG-), whether the predominant octasaccharide in the acceptor was XXLG (as in tamarind seed XG) or XLXG (as in nasturtium seed XG). It is concluded that the first xylosylglucose from the reducing end of the subunits was the Gal acceptor locus preferred by the solubilized pea transferase. These observations are incorporated into a model for the biosynthesis of cell wall XGs.  相似文献   

13.
Addition of xyloglucan-derived oligosaccharides shifted the wall-bound xyloglucans to a lower molecular mass distribution and increased the cell wall extensibility of the native epidermal tissue strips isolated from azuki bean (Vigna angularis) epicotyls. To ascertain the mechanism of oligosaccharide function, we examined the action of a xyloglucan endotransglucosylase/hydrolase (XTH) showing both endotransglucosylase and endohydrolase activities, isolated from azuki bean epicotyl cell walls, in the presence of xyloglucan oligosaccharides. The addition of xyloglucan oligosaccharides enhanced the xyloglucan-degrading activity of XTH against isolated xyloglucan substrates. When the methanol-fixed epidermal tissue strips were incubated with XTH, the molecular mass of wall-bound xyloglucans was decreased and the cell wall extensibility increased markedly in the presence of the oligosaccharides. These results suggest that xyloglucan oligosaccharides stimulate the degradation of xyloglucans by enhancing the XTH activity within the cell wall architecture, thereby increasing the cell wall extensibility in azuki bean epicotyls.  相似文献   

14.
罗望子中葡聚木糖的结构与功能初探   总被引:1,自引:0,他引:1  
乔木植物罗望子种子中富含木聚葡糖,是一种理想的膳食纤维来源。本文对该种子中所含的可溶性纤维进行了纤维素酶水解-HPLC分析和甲基化键型分析,证明其结构与在细胞壁中木聚葡糖基本相同。小白鼠动物实验初步确定了其促进肠蠕动的作用。  相似文献   

15.
To improve the solubilization of two water-soluble xyloglucans, tamarind seed polysaccharide and detarium gum, by reducing substantially molecular aggregation, a "pressure cell" heating method was used. Conditions allowing solubilization and chain depolymerization were produced by varying appropriately the pressure, time, and temperature applied. The various MW fractions of solubilized xyloglucans were characterized by capillary viscometry and light scattering techniques in order to extract, with reliability, fundamental macromolecular parameters. Mark-Houwink and Flory exponents were found to be 0.67 +/- 0.04 and 0.51 +/- 0.06, respectively for both xyloglucan data combined, consistent with linear random coil behavior. A detailed analysis of the data seems to suggest that tamarind gum solutions are slightly perturbed by the effect of excluded volume, whereas detarium gum samples are close to the theta state. Chain flexibility parameters such characteristic ratio, C( proportional, variant ), and persistence length, L(p), were calculated for tamarind and detarium using the Burchard-Stockmayer-Fixman (BSF) geometric method. L(p) values of 6-8 nm were estimated for xyloglucans. The seemingly linear structure of tamarind and detarium, as suggested by the value of the Mark-Houwink and Flory exponents obtained, follows from analysis of the data by the classical Zimm method but not when employing the square root or Berry method which suggests a more branched chain profile. This was the approach adopted in our previous work on the characterization of detarium samples.  相似文献   

16.
- Model composites, produced using cellulose from stationary cultures of the bacterium Gluconoacetobacter xylinus and tamarind xyloglucan, were examined by wide-angle X-ray scattering (WAXS) and CP/MAS solid-state (13)C NMR spectroscopy. The dominant crystallite allomorph of cellulose produced in culture media with or without xyloglucan was cellulose I(alpha) (triclinic). The presence of xyloglucan in the culture medium reduced the cross-section dimensions of the cellulose crystallites, but did not affect the crystallite allomorph. However, when the composites were refluxed in buffer, the proportion of cellulose I(beta) allomorph increased relative to that of cellulose I(alpha). In contrast, cellulose I(alpha) remained the dominant form when cellulose, produced in the absence of xyloglucan, was then heated in the buffer. Hence the presence of xyloglucan has a profound effect on the formation of the cellulose crystallites by G. xylinus.  相似文献   

17.

Background

Xyloglucan xyloglucosyl transferases (EC 2.4.1.207), known as xyloglucan endotransglycosylases (XETs) use a disproportionation reaction mechanism and modulate molecular masses of xyloglucans. However, it is not known precisely how these size modulations and transfer reactions occur with polymeric acceptor substrates.

Methods

cDNAs encoding three barley HvXETs were expressed in Pichia pastoris and reaction mechanism and molecular properties of HvXETs were investigated.

Results

Significant differences in catalytic efficiencies (kcat·Km1) were observed and these values were 0.01, 0.02 and 0.2 s1·mg1·ml for HvXET3, HvXET4 and HvXET6, respectively, using tamarind xyloglucan as a donor substrate. HPLC analyses of the reaction mixtures showed that HvXET6 followed a stochastic reaction mechanism with fluorescently or radioactively labelled tamarind xyloglucans and xyloglucan-derived oligosaccharides. The analyses from two successive reaction cycles revealed that HvXET6 could increase or decrease molecular masses of xyloglucans. In the first reaction cycle equilibrium was reached under limiting donor substrate concentrations, while xyloglucan mass modulations occurred during the second reaction cycle and depended on the molecular masses of incoming acceptors. Deglycosylation experiments indicated that occupancy of a singular N-glycosylation site was required for activity of HvXET6. Experiments with organic solvents demonstrated that HvXET6 tolerated DMSO, glycerol, methanol and 1,4-butanediol in 20% (v/v) concentrations.

Conclusions

The two-phase experiments demonstrated that large xyloglucan molecules can bind in the acceptor sites of HvXETs.

General significance

The results characterise donor and acceptor binding sites in plant XET, report that HvXETs act on xyloglucan donor substrates adsorbed onto nanocrystals and that HvXETs tolerate the presence of organic solvents.  相似文献   

18.
Xyloglucan oligosaccharides were prepared by endo-(1-->4)-beta-D-glucanase digestion of alkali-extractable xyloglucan from olive fruit and purified by a combination of gel-permeation (Bio-Gel P-2) chromatography and high-performance anion-exchange chromatography. The two most abundant oligosaccharides were converted to the corresponding oligoglycosyl alditols by borohydride reduction and structurally characterised by NMR spectroscopy and post-source decay (PSD) fragment analysis of matrix-assisted laserinduced desorption/ionisation time-of-flight (MALDI-TOF) mass spectra. The results revealed that olive fruit xyloglucan is mainly built from two novel oligosaccharides: XXSG and XLSG. The structure of the oligosaccharides confirmed the presence of a specific xyloglucan in olive fruit with alpha-L-Araf-(1-->2)-alpha-D-Xylp sidechains as was suggested previously. The presence of such sidechains is a common feature of xyloglucans with an XXGG core produced by solanaceous plants but has not been demonstrated for other dicotyledonous plants, which have in general an XXXG core. Direct treatment of cell wall material from olive fruit with pectin degrading enzymes in combination with endo-(1-->4)-beta-D-glucanase revealed that some of the arabinose residues of the oligosaccharides XXSG and XLSG are substituted with either 1 or 2 O-acetyl groups.  相似文献   

19.
Thermobifida fusca xyloglucan-specific endo-beta-1,4-glucanase (Xeg)74 and the Xeg74 catalytic domain (CD) were cloned, expressed in Escherichia coli, purified and characterized. This enzyme has a glycohydrolase family-74 CD that is a specific xyloglucanase followed by a family-2 carbohydrate binding module at the C terminus. The Michaelis constant (Km) and maximal rate (Vmax) values for hydrolysis of tamarind seed xyloglucan (tamXG) are 2.4 micro m and 966 micro mol xyloglucan oligosaccharides (XGOs) min-1. micro mol protein-1. More than 75% of the activity was retained after a 16-h incubation at temperatures up to 60 degrees C. The enzyme was most active at pH 6.0-9.4. NMR analysis showed that its catalytic mechanism is inverting. The oligosaccharide products from hydrolysis of tamXG were determined by MS analysis. Cel9B, an active carboxymethylcellulose (CMC)ase from T. fusca, was also found to have activity on xyloglucan (XG) at 49 micro mol.min-1. micro mol protein-1, but it could not hydrolyze XG units containing galactose. An XG/cellulose composite was prepared by growing Gluconacetobacterxylinus on glucose with tamXG in the medium. Although a mixture of purified cellulases was unable to degrade this material, the composite material was fully hydrolyzed when Xeg74 was added. T. fusca was not able to grow on tamXG, but Xeg74 was found in the culture supernatant at the same level as was found in cultures grown on Solka Floc. The function of this enzyme appears to be to break down the XG surrounding cellulose fibrils found in biomass so that T. fusca can utilize the cellulose as a carbon source.  相似文献   

20.
α-Linked xylose is a major component of xyloglucans in the cell walls of higher plants. An α-xylosidase (AxlA) was purified from a commercial enzyme preparation from Aspergillus niger, and the encoding gene was identified. The protein is a member of glycosyl hydrolase family 31. It was active on p-nitrophenyl-α-d-xyloside, isoprimeverose, xyloglucan heptasaccharide (XXXG), and tamarind xyloglucan. When expressed in Pichia pastoris, AxlA had activity comparable to the native enzyme on pNPαX and IP despite apparent hyperglycosylation. The pH optimum of AxlA was between 3.0 and 4.0. AxlA together with β-glucosidase depolymerized xyloglucan heptasaccharide. A combination of AxlA, β-glucosidase, xyloglucanase, and β-galactosidase in the optimal proportions of 51:5:19:25 or 59:5:11:25 could completely depolymerize tamarind XG to free Glc or Xyl, respectively. To the best of our knowledge, this is the first characterization of a secreted microbial α-xylosidase. Secreted α-xylosidases appear to be rare in nature, being absent from other tested commercial enzyme mixtures and from the genomes of most filamentous fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号