首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Neonicotinoids such as the insecticide imidacloprid (IMI) act as agonists at the insect nicotinic acetylcholine receptor (nAChR). Head membranes of Drosophila melanogaster and Musca domestica have a single high-affinity binding site for [3H]IMI with K D values of 1–2 n M and B max values of 560–850 fmol/mg of protein. Locusta and Periplaneta nAChRs isolated with an α-bungarotoxin (α-BGT)-agarose affinity column are known to be α-subunit homooligomers. This study uses 1 - [ N - (6 - chloro - 3 - pyridylmethyl) - N - ethyl]amino - 1 - amino-2-nitroethene (which inhibits [3H]IMI binding to Drosophila and Musca head membranes at 2–3 n M ) to develop a neonicotinoid-agarose affinity column. The procedure—introduction of Triton-solubilized Drosophila or Musca head membranes into this neonicotinoid-based column, elution with IMI, and analysis by lithium dodecyl sulfate-polyacrylamide gel electrophoresis—gives only three proteins (69, 66, and 61 kDa) tentatively assigned as putative subunits of the nAChR; the same three proteins are obtained with Musca using the α-BGT-agarose affinity column. Photoaffinity labeling of the Drosophila and Musca putative subunits from the neonicotinoid column with 125I-α-BGT-4-azidosalicylic acid gives a labeled derivative of 66–69 kDa. The yield is 2–5 µg of receptor protein from 1 g of Drosophila or Musca heads. Neonicotinoid affinity chromatography to isolate native Drosophila and Musca receptors will facilitate studies on the structure and function of insect nAChRs.  相似文献   

2.
Cloning of a Putative Neuronal Nicotinic Acetylcholine Receptor Subunit   总被引:2,自引:0,他引:2  
A cDNA clone was isolated from a rat superior cervical ganglion cDNA library with an oligonucleotide that hybridized to muscle-like nicotinic acetylcholine receptor (nAChR) subunit cDNA. The deduced amino acid sequence possesses characteristics expected of a nAChR subunit that does not bind acetylcholine, in addition to distinctive features such as unique cysteine residues and N-linked glycosylation sites.  相似文献   

3.
Forty-three bisammonium ganglionic blockers were synthesized to study the structure of the ion channel of nicotinic acetylcholine receptor. The conformational parameters of these blockers were studied, and their effects toward the ganglionic transmission in situ on the sympathetic feline superior cervical ganglia and in vitro on the parasympathetic guinea-pig small intestine ganglia were determined. A model of the binding site for the bisammonium ganglionic blockers in the neuronal ion channel was proposed.  相似文献   

4.
The recent introduction of the chloronicotinyl insecticide imidacloprid, targeting insect nicotinic acetylcholine receptors (nAChRs), emphasises the importance of a detailed molecular characterisation of these receptors. We are investigating the molecular diversity of insect nAChR subunit genes in an important agricultural pest, the peach-potato aphid Myzus persicae. Two M. persicae alpha-subunit cDNAs, Mp alpha1 and Mp alpha2, have been cloned previously. Here we report the isolation of three novel alpha-subunit genes (Mp alpha3-5) with overall amino acid sequence identities between 43 and 76% to characterised insect nAChR subunits. Alignment of their amino acid sequences with other invertebrate and vertebrate nAChR subunits suggests that the insect alpha subunits evolved in parallel to the vertebrate neuronal nAChRs and that the insect non-alpha subunits are clearly different from vertebrate neuronal beta and muscle non-alpha subunits. The discovery of novel subtypes in M. persicae is a further indicator of the complexity of the insect nAChR gene family. Heterologous co-expression of M. persicae nAChR alpha-subunit cDNAs with the rat beta2 in Drosophila S2 cells resulted in high-affinity binding of nicotinic radioligands. The affinity of recombinant nAChRs for [3H]imidacloprid was influenced strongly by the alpha subtype. This is the first demonstration that imidacloprid selectively acts on Mp alpha2 and Mp alpha3 subunits, but not Mp alpha1, in M. persicae.  相似文献   

5.
On neurons of the superior cervical ganglion of 3-week-old rats, we studied the mechanism underlying the blocking effect of mecamylamine on transmembrane currents evoked by iontophoretic application of acetylcholine (ACh currents); these currents were recorded with the use of a patch-clamp technique in the whole-cell configuration. The IC50 of the above agent equaled (2.7 ± 0.3) · 10-10 M. The blocking effect of mecamylamine on ACh current did not depend on the membrane potential and decreased with rise in the concentration of the drug. Thus, a competitive blocking mechanism mostly underlies the above phenomenon.  相似文献   

6.
Abstract: Ligand-gated ion channels are oligomeric transmembrane proteins that usually contain more than one kind of monomer. The variety of monomers available to participate in oligomer formation and the apparent latitude in acceptable monomer combinations allows considerable diversity. Mechanisms for identifying the monomers comprising specific receptors are needed. We have generated affinity-purified polyclonal antisera that recognize the extracellular domain of nine neuronal nicotinic acetylcholine receptor (nAChR) subunits and distinguish between them. We prepared these antisera by immunizing rabbits with bacterially expressed recombinant protein representing the N-terminal extracellular domain of each neuronal nAChR subunit followed by affinity purification of antibodies against synthetic peptides corresponding to residues 68–81 of the α1 subunit. We demonstrate subunit specificity of each affinity-purified antisera by western blots of the bacterially expressed protein and immunoblot against peptide. We further used these antibodies to demonstrate expression of neuronal nAChR subunits on the surface of transiently transfected simian kidney (COS-7) cells.  相似文献   

7.
Mastoparan (MP), a tetradecapeptide in wasp venom, has been reported to evoke catecholamine release, but also reported to inhibit secretory response upon nicotinic stimulation in adrenal chromaffin cells. To elucidate the inhibitory mechanism of MP, we examined the effect of two MP fragments (INLK-NH2 and KKIL-NH2) on catecholamine release in bovine adrenal chromaffin cells. These MP fragments inhibited catecholamine release induced by nicotinic stimulation in a noncompetitive manner. These fragments did not affect catecholamine release evoked by high [K+] or by other secretagogues, neither caused catecholamine release by themselves. Replacement by hydrophobic and basic amino acids of the MP fragments enhanced the inhibitory effects on ACh-evoked catecholamine release. Among 23 analogs of the MP fragments, (Nle)3-R-NH2 showed the most potent inhibition with IC50 = 541 microM. These results suggested that the MP fragments selectively inhibit the secretory response to nicotinic stimulation by attacking nAChR on the site(s) made up of hydrophobic and acidic amino acids but other than ACh-binding sites. This mechanism may explain the inhibitory action of MP on nicotine-evoked catecholamine release.  相似文献   

8.
Abstract: Expression of the cloned neuronal nicotinic acetylcholine receptor (nAChR) α7 subunit in several cultured mammalian cell lines has revealed that the folding, assembly, and subcellular localization of this protein are critically dependent upon the nature of the host cell. In all cell lines that were examined, high levels of α7 protein were detected by metabolic labelling and immunoprecipitation after transfection with the cloned α7 cDNA. In contrast, elevated levels of α-bungarotoxin binding could be detected in only two of the nine cell lines. Both of these "α7-permissive" cell lines [rat phaeochromocytoma (PC12) and human neuroblastoma (SH-SY5Y)] express an endogenous α7 subunit. However, by expression of an epitope-tagged α7 subunit, it has been possible to show that the elevation in surface α-bungarotoxin binding in these two cell lines is due to expression of cDNA-encoded α7. The cell-specific misfolding of the neuronal nAChR α7 subunit is a phenomenon that is not shared by either the hetero-oligomeric muscle nAChR or the homo-oligomeric serotonin receptor 5-HT3 subunit. Our data also indicate that the cell-specific misfolding cannot be explained by a requirement for the coassembly with other known nAChR subunits and cannot be alleviated by treatments that have been reported to affect the assembly efficiency of other neurotransmitter-gated ion channels.  相似文献   

9.
Here we report on the use of iodination of the membrane-bound nicotinic acetylcholine receptor (nAChR) from Torpedo californica electric tissue in order to define surface-exposed portions of the receptor molecule. Membrane-bound nAChR was 125I-iodinated using the oxidation agent Iodo-Gen. The iodinated subunits were separated by preparative gel electrophoresis, desalted, and cleaved with trypsin. The resulting peptides were separated by reverse-phase HPLC and the radioactive peptides were identified by mass spectrometry and protein sequencing. For the -subunit, we identified five iodinated peptides containing the tyrosine residues Tyr17, Tyr74, Tyr365, Tyr372, and Tyr428. The surface exposition of these amino acids is in agreement with the four-transmembrane-segment model (4TM model) of the nAChR, but the assignment to the intra- or extracellular surface is doubtful. According to this model, the N-terminal portion of the receptor subunits including the iodinated residues Tyr17 and Tyr74 is extracellular and Tyr372 as a site of tyrosine phosphorylation is located on the cytoplasmic side. But since this latter residue is among the first to be iodinated using an immobilized iodination agent, its true position with respect to the membrane bilayer is not clear.  相似文献   

10.
11.
12.
Abstract: Abstract: The effect of the neuropeptide substance P on the binding of the cholinergic ligands to the nicotinic acetylcholine receptor of Torpedo electroplaque membranes was examined at a physiological concentration of NaCl (150 m M ). Substance P had no effect on the initial rate of 125I-α-bungarotoxin binding at concentrations of <100 μ M . The peptide did not bind to the high-affinity local anesthetic site but allosterically modulated [3H]phencyclidine binding, positively in the absence of agonist and negatively in the presence of agonist. Substance P increased the apparent affinity of the cholinergic agonists carbamylcholine and acetylcholine at equilibrium. The effect of substance P on the equilibrium binding of [3H]acetylcholine was examined directly, and the peptide appeared to increase the affinity of the binding of the second molecule of agonist, with no effect on the binding of the first. This indicates that substance P can affect the cooperative interactions between agonist binding sites. Substance P appeared to increase the rate of carbamylcholine-induced desensitization; however, the data are also consistent with an allosteric mechanism that does not involve the desensitized state. To attempt to differentiate between these mechanisms, the rates of recovery were determined after exposure to peptide and/or agonist. The kinetics of recovery are consistent with stabilization of the desensitized state by substance P if the peptide remains bound long enough to allow rapid recovery to the low-affinity state. However, an allosteric modulation of agonist binding that does not involve the desensitized state cannot be ruled out.  相似文献   

13.
Zeng J  Shu SY  Bao X  Zou F  Ji A  Ye J 《Neurochemical research》1999,24(12):1571-1575
Cell-attached mode of patch clamp technique was employed to investigate the properties of acetylcholine (ACh)-induced ion channels in acutely dissociated neurons from the marginal division (MrD) of rat striatum. Two types of conductance states (25 pS and 60 pS) were recorded. The 25 pS channel (more than 80%) was the main type in the neurons of MrD and was described here. The amplitudes of inward currents increased with hyperpolorization and the reversing potential was about 0 mV. Both single short opening and long burst openings were observed in MrD neurons. Two time constants of these two kinds of ion channels are 0.29 ms, 1.84 ms and 1.96 ms, 18.24 ms, respectively. Average close time can be fitted with two exponential functions, the two time constants are 1.7 ms and 54 ms. Probability of channel opening is about 0.012 and no voltage-dependence was found. The properties of reversing potential, voltage-independence and the form of agonist to the ion channels indicated that the recorded channel currents flow through AChR channels. The mAChR is involved in slow synaptic transmission and Ach can not induce the opening of mAChR ion channel. The binding site of ACh to AChR and the nAChR ion channel are the same protein, ACh can only activate nAChR ion channel directly. Therefore, the recorded ion channels in the present study are nAChR ion channels. The results suggest that nAChR ion channels exist in the neurons of MrD and the MrD probably is involved in learning and memory mechanism of the brain.  相似文献   

14.
从华蟹甲草中分离的两种活性成分对家蝇的杀虫活性   总被引:9,自引:1,他引:8  
研究了从我国特有植物华蟹甲草Sinacalia tangutica (Maxim.) B. Nord中经生物活性跟踪实验得出的杀虫活性成分Z,Z,Z-9,12,15-十八碳三烯酸和Z,Z-9,12-十八碳二烯酸对家蝇Musca domestica vicina的生物活性及对其生理生化指标的影响。结果表明,家蝇经该2种化合物1 mg/mL处理后表现出类似神经毒剂中毒的兴奋症状。这2种化合物对家蝇表现出毒杀作用,24 h时,Z,Z,Z-9,12,15-十八碳三烯酸和Z,Z-9,12-十八碳二烯酸对家蝇的LC50值分别为0.26 mg/mL和0.43 mg/mL; 对家蝇触杀作用极低,以1 mg/mL分别点滴处理家蝇后48 h,死亡率分别为21.54%和4.08%。这2种化合物对家蝇的AChE影响不明显,但可引起家蝇的过氧化物酶的活性发生紊乱,对家蝇总糖含量也有一定的影响。Z,Z-9,12-十八碳二烯酸可引起家蝇的Mg-ATPase的比活力降低,而Z,Z,Z-9,12,15-十八碳三烯酸引起家蝇的Na-K-Mg-ATPase和Ca-ATPase的比活力较对照上升。  相似文献   

15.
1.Phencyclidine (PCP) is an inhibitor of the nicotinic acetylcholine receptor (AChR) with characteristics of an open-channel blocker. The location of PCP binding site on the AChR molecule is unknown.2.PCP inhibits the AChR from electric organ with a higher potency than muscle AChR. To find the molecular basis of this difference, we expressed the two native and six hybrid receptors, and two receptors containing mutated mouse subunits in Xenopus laevis oocytes. The inhibition of ACh-induced current in these receptors by PCP was studied using whole-cell voltage-clamp. All hybrid receptors generated robust ACh-induced currents, while incomplete receptors (-less or -less) did not.3.PCP potency was higher on hybrids containing Torpedo and subunits regardless of the and subunit origin. A mouse subunit containing the asparagine 6 to the serine mutation in the M2 segment conferred a high sensitivity to PCP.4.These results support the conclusion that the amino acid residues at the position 6 of the M2 segments contribute to the PCP potency difference between Torpedo and mouse receptors.5.Another noncompetitive inhibitor of the AChR, the cembranoid eupalmerin acetate (EUAC), also inhibited the electric organ receptor with a somewhat higher potency than muscle AChR. However, the IC50 values for EUAC inhibition of hybrid receptors did not follow the pattern observed for PCP. Therefore, these two inhibitors interact differently with the AChR molecule.  相似文献   

16.
17.
对实验室分离保存的 5 4株苏云金芽孢杆菌的H 血清型、杀虫晶体蛋白质 ,杀虫基因cry 1C和对甜菜夜蛾的活性进行了检测 ,分析了它们之间的关系。结果表明 ,有 2 8株菌株含有cry 1C基因 ,携带有cry 1C基因的菌株的晶体蛋白质主要为 135ku左右 ,它们对甜菜夜蛾均有较高的毒性 ,这些菌株的鞭毛抗原血清型主要分布在H 5和H 7。  相似文献   

18.
Abstract : We have isolated a cDNA clone from the nematode Caenorhabditis elegans that encodes a protein of greatest sequence similarity to muscarinic acetylcholine receptors. This gene codes for a polypeptide of 682 amino acids containing seven putative transmembrane domains. The amino acid identities, excluding a highly variable middle portion of the third intracellular loop, to the human m1-m5 receptors are 28-34%. When this cloned receptor was coexpressed with a G protein-gated inwardly rectifying K+ channel (GIRK1) in Xenopus oocyte, acetylcholine was able to elicit the GIRK current. This acetylcholine-induced current was substantially inhibited by the muscarinic antagonist atropine in a reversible manner. However, another muscarinic agonist oxotremorine and antagonists scopolamine and pirenzepine had little or negligible effects on this receptor. Taken together, these results suggest that the cloned gene encodes a G protein-linked acetylcholine receptor that is most similar to but pharmacologically distinct from muscarinic acetylcholine receptors.  相似文献   

19.
To elucidate the regulation of the rat dopamine transporter (rDAT), we established several PC12 variants overexpressing the rDAT. Treating these cells with a nicotinic agonist (1,1-dimethyl-4-phenylpiperazinium iodide, 30 microM) depolarized the plasma membrane potential from -31 +/- 2 to 43 +/- 5 mV and inhibited rDAT activity significantly in a calcium- and protein kinase C-independent manner. Membrane depolarization by a high external K+ concentration or two K+ channel blockers (tetraethylammonium hydroxide and BaCl2) also resulted in a marked inhibition of rDAT activity. Such inhibition of dopamine uptake is due to a reduction in Vmax, with no marked effect on the Km for dopamine. The potency of cocaine in inhibiting dopamine uptake was not significantly altered, whereas that of amphetamine was slightly enhanced by membrane depolarization. Removing extracellular Ca2+ or blocking the voltage-sensitive L-type calcium channels using nifedipine did not exert any significant effect on the inhibition of rDAT activity by depolarization. These data confirm that calcium influx on depolarization is not required for inhibition of the rDAT. Collectively, our data suggest that rDAT activity can be altered by a neurotransmitter that modulates the membrane potential, thus suggesting an exquisite mechanism for the fine-tuning of dopamine levels in the synapse.  相似文献   

20.
The aim of this study was to verify the presence of presynaptic nicotinic acetylcholine receptors (nAChRs) at the terminals of myenteric motoneurons using a potent and highly selective nicotinic agonist, epibatidine. We examined contraction, and release of [3H]ACh on a guinea-pig longitudinal muscle strip preparation. First, we compared the ability of epibatidine and nicotine to induce isometric contraction and found epibatidine (EC50 = 23.1 nM) to be 300-fold more potent than nicotine (EC50 = 7.09 M). The release and contraction induced by 30 nM epibatidine were inhibited by the nicotinic antagonist mecamylamine (3 M) and the Na1-channel blocker TTX (1 M), indicating that the effects are mediated via nAChRs and are fully dependent on the propagation of action potentials. Atropine (0.1 M) significantly increased the [3H]ACh release but could not block contraction suggesting that a substantial part of the response develops via a noncholinergic mechanism. Epibatidine at a higher concentration (300 nM) induced contraction, which was only partly (45%) inhibited by TTX (1 M). The TTX-resistant contraction, however, was completely blocked by mecamylamine (3 M). Our data provide functional neurochemical evidence for the existence of presynaptic nAChRs at myenteric motoneuron terminals and suggest that these receptors can be activated only/by a higher concentration of agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号