首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从第二次枝梗原基分化期开始用长日照(LD)或短日照(SD)处理光敏感核不育水稻农垦58S和常规水稻农垦58。与SD处理比较,LD处理明显抑制农垦58S和农垦58的抗坏血酸过氧化物酶(AsAPOD)的活性,对农垦58S的AsA POD活性的抑制效应较之农垦58的大。随着AsA POD活性下降,抗坏血酸(AsA)和丙二醛(MDA)的含量逐渐增加,AsA POD活性与AsA和MDA含量之间呈负相关。LD抑制ASA POD活性和抑制幼穗发育的时间有一定的一致性。推测在LD处理下AsA POD活性下降与幼穗发育受阻有某些内在的联系。  相似文献   

2.
从第二次枝梗原基分化期开始用长日照(LD)或短日照(SD)处理光敏感核不育水稻农垦58S 和常规水稻农垦58。与 SD 处理比较,LD 处理明显抑制农垦58S 和农垦58的抗坏血酸过氧化物酶(AsAPOD)的活性,对农垦58S 的 AsA POD 活性的抑制效应较之农垦58的大。随着 AsAPOD 活性下降,抗坏血酸(AsA)和丙二醛(MDA)的含量逐渐增加,AsA POD 活性与 AsA 和MDA 含量之间呈负相关。LD 抑制 ASA POD 活性和抑制幼穗发育的时间有一定的一致性。推测在 LD 处理下 AsA POD 活性下降与幼穗发育受阻有某些内在的联系。  相似文献   

3.
The effects of ascorbic acid (AsA) on the formation process for a heat-induced gel offish meat (kamaboko) were examined. An investigation of the bonds influenced by adding AsA indicates that the aggregation of protein by noncovalent binding decreased and that by cross-linking, except for disulfide bonding, significantly increased in comparison with the control during a 30- min incubation at 40°C (suwari process). The results from the same investigation on a heat-induced gel incubated at 90°C for 30 min without using the suwari process, and the effects of AsA on the activity of transglutaminase indicate that this difference was derived not from activation of the enzyme by AsA but from the direct effect of AsA on the proteins. No effect of AsA on the increase in surface hydrophobicity of crude actomyosin at 40 and 90°C was found. Moreover, when the surimi with modified sulfhydryl groups was used, the disappearance of aggregation influenced by adding AsA and an accumulation of aggregates by noncovalent bonding during the formation of a heat-induced gel occured. These results suggest that polymerization during the formation of a heat-induced gel proceeded as follows: native proteins were first aggregated by noncovalent bonding, next by disulfide bonding, and finally by cross-linking apart from disulfide bonding, and that AsA improved the quality of a heat-induced gel by accelerating the formation of disulfide bonds.  相似文献   

4.
The inhibitory effects of berry polyphenols on digestive enzymes   总被引:1,自引:0,他引:1  
The evidence for the effect of polyphenol components of berries on digestive enzymes is reviewed. Anthocyanins inhibit alpha-glucosidase activity and can reduce blood glucose levels after starch-rich meals, a proven clinical therapy for controlling type II diabetes. Ellagitannins inhibit alpha-amylase activity and there is potential for synergistic effects on starch degradation after ingestion of berries such as raspberries and strawberries, which contain substantial amounts of ellagitannins and anthocyanins. A range of berry polyphenols (e.g. flavonols, anthocyanidins, ellagitannins and proanthocyanidins) can inhibit protease activities at levels which could affect protein digestion in the gastrointestinal tract. In contrast, potential for the inhibition of gastrointestinal lipase activity, a proven therapeutic target for the control of obesity through reduced fat digestion, may be limited to proanthocyanidins. Taking into account the manifold possible synergies for inhibition of starch, protein and/or lipid digestion by the spectrum of polyphenol components present within berry species, the inhibition of digestive enzymes by dietary polyphenols may represent an under-reported mechanism for delivering some of the health benefits attributed to a diet rich in fruit and vegetables.  相似文献   

5.
Two isozymes of ascorbate (AsA) peroxidase were found in tealeaves, and one of them (AsA peroxidase II) was purified tohomogeneity, as judged by polyacrylamide gel electrophoresis.AsA peroxidase II is a monomer with a molecular weight of 34,000and contains protoheme, but it is not a glycoprotein. The enzymeshowed a Soret peak at 409 run and at 420 nm when oxidized andreduced, respectively, with an a-band at 556 nm. The oxidizedenzyme showed two small peaks at 478 nm and 530 nm. The peakat 478 nm disappeared when the enzyme was inactivated by depletionof AsA or by the addition of cyanide. Antibody raised againstAsA peroxidase II from tea did not cross-react with guaiacolperoxidase from spinach, and antibody against the guaiacol peroxidasedid not with AsA peroxidases from tea leaf. The amino acid compositionand amino acid sequence of the amino-terminal region of AsAperoxidase II were determined. Little homology in terms of aminoacid sequence was found between AsA peroxidase II and variousguaiacol peroxidases. The enzymatic and molecular propertiesof the two isozymes showed distinct differences with respectto molecular weight, sensitivity to AsA-depletion, specificityfor the electron donor, and other enzymatic properties. (Received April 13, 1989; Accepted July 25, 1989)  相似文献   

6.
Li M  Ma F  Liang D  Li J  Wang Y 《PloS one》2010,5(12):e14281

Background

Ascorbic acid (AsA) is a unique antioxidant as well as an enzyme cofactor. Although it has multiple roles in plants, it is unclear how its accumulation is controlled at the expression level, especially in sink tissues. Kiwifruit (Actinidia) is well-known for its high ascorbate content. Our objective was to determine whether AsA accumulates in the fruits primarily through biosynthesis or because it is imported from the foliage.

Methodology/Principal Findings

We systematically investigated AsA levels, biosynthetic capacity, and mRNA expression of genes involved in AsA biosynthesis in kiwi (A. deliciosa cv. Qinmei). Recycling and AsA localization were also monitored during fruit development and among different tissue types. Over time, the amount of AsA, with its capacity for higher biosynthesis and lower recycling, peaked at 30 days after anthesis (DAA), and then decreased markedly up to 60 DAA before declining more slowly. Expression of key genes showed similar patterns of change, except for L-galactono-1,4-lactone dehydrogenase and L-galactose-1-phosphate phosphatase (GPP). However, GPP had good correlation with the rate of AsA accumulation. The expression of these genes could be detected in phloem of stem as well as petiole of leaf and fruit. Additionally, fruit petioles had greater ascorbate amounts, although that was the site of lowest expression by most genes. Fruit microtubule tissues also had higher AsA. However, exogenous applications of AsA to those petioles did not lead to its transport into fruits, and distribution of ascorbate was cell-specific in the fruits, with more accumulation occurring in larger cells.

Conclusions

These results suggest that AsA biosynthesis in kiwi during early fruit development is the main reason for its accumulation in the fruits. We also postulate here that GPP is a good candidate for regulating AsA biosynthesis whereas GDP-L-galactose-1-phosphate phosphorylase is not.  相似文献   

7.
The oxidative modification of low density lipoprotein (LDL) is thought to be an important factor in the initiation and development of atherosclerosis. Antioxidants have been shown to protect LDL from oxidation and to inhibit atherosclerosis development in animals. Potent synthetic antioxidants are currently being tested, but they are not necessarily safe for human use. We here characterize the antioxidant activity of IRFI005, the active metabolite of Raxofelast (IRFI0016) that is a novel synthetic analog of vitamin E under clinical development, and demonstrate that it prevents oxidative modification of LDL. IFI005 inhibited the oxidative modification of LDL, measured through the generation of MDA, electrophoretic mobility and apo B100 fluorescence. During the oxidation process IRF1005 was consumed with the formation of the benzoquinone oxidation product. The powerful antioxidant activity of IRFI005 is at least in part mediated by a chain breaking mechanism as it is an efficient peroxyl radical scavenger with a rate constant k(IRFI005 + LOO(o)) of 1.8 X 10(6) M(-1)s(-1). 4. IRFI005 substantially preserved LDL-associated antioxidants, alpha-tocopherol and carotenoids, and when co-incubated with physiologic levels of ascorbate provoked a synergistic inhibition of LDL oxidation. Also the co-incubation of IRFI005 with Trolox caused a synergistic effect, and a lag phase in the formation of the trolox-benzoquinone oxidation product. A synergistic inhibition of lipid peroxidation was also demonstrated by co-incubating IRFI005 and alpha-tocopherol incorporated in linoleic acid micelles. These data strongly suggest that IRFI005 can operate by a recycling mechanism similar to the vitamin E/ascorbate sysem.  相似文献   

8.
The involvement of the ascorbate (AsA) system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress was studied. The treatment of 5-day-old pumpkin seedlings with 50 microM aluminium sulphate resulted in approximately 60% inhibition of root growth within 48-60 h of treatment, while aluminium accumulated in the roots reaching a maximum within 48h. During the same period, the hydrogen peroxide content of the roots was strongly enhanced. The increased level of hydrogen peroxide was matched by both increased ascorbate peroxidase (APX) (EC 1.11.1.11) activity and ascorbate free radical reductase (AFRR) (EC 1.1.5.4) activity, while dehydroascorbate reductase (DHAR) (EC 1.8.5.1) and glutathione reductase (GR) (EC 1.6.4.2) did not change. The levels of AsA in the roots were also increased by the Al treatment. It was concluded that an oxidative burst is probably involved in the toxicity of Al in pumpkin roots and that plants react to the enhanced production of reactive oxygen species by expressing higher levels of scavenging systems such as the AsA-APX system.  相似文献   

9.
The effect of lanthanum on the metabolism of ascorbate (AsA) and glutathione (GSH) in the leaves of maize seedlings under cadmium stress was investigated. The findings showed that Cd remarkably increased electrolyte leakage (EL), the activities of ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase (MDHAR), glutathione reductase, L-galactono-1,4-lactone dehydrogenase, and γ-glutamylcysteine synthetase, and the content of reduced AsA, reduced GSH, total AsA, total GSH, malondialdehyde (MDA), and Cd, compared with control. However, Cd significantly decreased the dry biomass of roots and shoots. Treatment with La + Cd evidently increased the activities of above enzymes except MDHAR, the content of reduced AsA, reduced GSH, total AsA and total GSH, and the dry biomass of roots and shoots, compared with Cd stress alone. Meanwhile, treatment with La + Cd remarkably decreased EL and the content of Cd and MDA compared with Cd stress alone. Our results suggested that La could be used as a regulator to improve the Cd tolerance of maize for its role in the alleviation of Cd-induced oxidative damage by regulating the metabolism of AsA and GSH.  相似文献   

10.
Ramonda serbica plants dehydrated for 14 days reached a relative water content of 4.2% and entered into anabiosis prior to being rehydrated for 48 h. Total ascorbate (AsA + DHA) and glutathione (GSH + GSSG) contents increased during dehydration and approached control values by the end of rehydration. Reduced ascorbate (AsA) and glutathione (GSH) were consumed during the first 13 days of dehydration when guaiacol-, syringaldazine- and phenolic peroxidases (EC 1.11.1.7) increased. At the end of dehydration AsA and GSH accumulated whereas peroxidases decreased to half the value of controls. In this period, plants of R. serbica face a phase of reduced metabolism and, thus, of reduced consumption of antioxidants. During rehydration, both AsA and GSH were utilized reaching, after 48 h, about 20 and 40% of their total pools, respectively; moreover peroxidases increased showing the recovery of metabolic activities. In the dehydration process total phenolic acids decreased, but accumulated after 5 h of rehydration and returned to control values at the end of rehydration. In R. serbica leaves, the most representative phenolic acids were protocatechuic, p -hydroxybenzoic and chlorogenic acids. Most concentrated phenolic acids, such as protocatechuic and chlorogenic acids, accumulated during the first period of rehydration when AsA decreased. These results suggest a role of ascorbate in inhibiting oxidation when phenolic peroxidases remain at low levels. As a consequence of this inhibition, ascorbate was oxidized and when most of it was consumed, oxidation of phenols resumed.  相似文献   

11.
In rodents, bile salt-stimulated lipase (BSSL) and pancreatic lipase-related protein 2 (PLRP2) are the dominant lipases expressed in the exocrine pancreas in early life when milk is the main food. The aim of the present study was to evaluate whether BSSL and PLRP2 are also key enzymes in neonatal intestinal fat digestion. Using Caco-2 cells as a model for the small intestinal epithelium, purified human enzymes were incubated in the apical compartment with substrates, bile salt composition and concentrations physiologic to newborn infants. Both BSSL and PLRP2 hydrolyzed triglycerides (TG) to free FA and glycerol. Released FA were absorbed by the cells and reesterfied to TG. Together, BSSL and PLRP2 had a synergistic effect, increasing cellular uptake and reesterification 4-fold compared with the sum of each lipase alone. A synergistic effect was also observed with retinyl ester as a substrate. PLRP2 hydrolyzed cholesteryl ester but not as efficiently as BSSL, and the two had an additive rather than synergistic effect. We conclude the key enzymes in intestinal fat digestion are different in newborns than later in life. Further studies are needed to fully understand this difference and its implication for designing optimal neonatal nutrition.  相似文献   

12.
Low temperature is an important limiting factor in tomato production in early spring and winter. 5-Aminolevulinic acid (ALA) protects crops against varied abiotic stresses. However, the methodology to precisely use ALA to increase the cold tolerance in tomatoes is still not fully known. We therefore explored the effects of ALA concentration, application period, and dose on membrane lipid peroxidation, antioxidation, photosynthesis, and plant growth in different tomato cultivars (Zhongza No. 9, ZZ and Jinpeng No. 1, JP) at low-temperature stress. Results revealed that low temperature caused plants oxidative damage and growth inhibition in both ZZ and JP plants. The ROS (hydrogen peroxide and superoxide anion) accumulation and membrane lipid peroxidation (malondialdehyde content and the relative electrical conductivity) were more remarkable in JP plants than ZZ plants under low temperature. The catalase (CAT) and ascorbate–glutathione cycle (AsA–GSH) induced by ALA reliably eliminated excessive ROS to maintain the redox balance in both tomato cultivars under low-temperature stress. In AsA–GSH cycle, AsA regeneration was mainly catalyzed by dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR), from dehydroascorbate (DHA) to AsA and monodehydroascorbate (MDA) to AsA in ZZ plants, while AsA regeneration in JP plants was mostly catalyzed by DHAR, from DHA to AsA. The ALA optimum concentration was 25 mg L?1. The tomato plants with five true leaves pretreated with 6 mL ALA were more effective than spraying after cold occurred. In conclusion, the two tomato varieties illustrated different capacities to bear low-temperature stress. And ZZ plants were more tolerant to low temperature than JP plants. Precise ALA pretreatment observably alleviated low temperature induced-damage via CAT and AsA–GSH cycle in both cultivars. The regeneration of AsA in AsA–GSH cycle may be more comprehensive in ZZ plants than JP plants, to better tolerate low-temperature stress.  相似文献   

13.
The primary reaction product of chloroplast ascorbate peroxidaseactivity was shown to be monodehydroascorbate radical (MDA).MDA reductase (EC 1.6.5.4 [EC] ) was localized in spinach chloroplaststroma. The MDA reductase activity of spinach chloroplasts,using NAD(P)H as electron donor, could account for the regenerationof ascorbate from MDA produced by ascorbate peroxidase activity.In the absence of MDA reductase, MDA disproportionated to ascorbate(AsA) and dehydroascorbate (DHA). The DHA was reduced to AsAby DHA reductase (EC 1.8.5.1 [EC] ) in chloroplasts. Both NADH andNADPH served as the electron donor of partially purified MDAreductase from spinach leaves. (Received September 24, 1983; Accepted January 23, 1984)  相似文献   

14.
盐碱胁迫是植物遭受的常见非生物胁迫之一,气体信号硫化氢(H2S)在植物响应盐碱胁迫中发挥着重要作用。为探讨H2S对盐碱胁迫下裸燕麦抗坏血酸(AsA)-谷胱甘肽(GSH)循环的调控效应,以品种‘定莜9号’为材料,研究了喷施H2S供体硫氢化钠(NaHS)或H2S合成抑制剂羟胺(HA)对盐碱混合胁迫下植株生长、叶片活性氧、膜脂过氧化和AsA-GSH循环中抗氧化物质和关键酶的影响。结果表明: 喷施50 μmol·L-1 NaHS可缓解50 mmol·L-1盐碱混合胁迫对裸燕麦生长的抑制,降低超氧阴离子、H2O2、丙二醛、氧化型抗坏血酸(DHA)、还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)含量,提高AsA/DHA和GSH/GSSG,而对还原型抗坏血酸(AsA)含量无显著影响。喷施NaHS还提高了盐碱混合胁迫下裸燕麦叶片AsA合成关键酶L-半乳糖脱氢酶(GalDH)和L-半乳糖-1,4-内酯脱氢酶(GalLDH)及AsA-GSH循环中单脱氢抗坏血酸还原酶(MDHAR)活性,降低了抗坏血酸过氧化物酶(APX)和脱氢抗坏血酸还原酶(DHAR)活性,而对抗坏血酸氧化酶(AO)和谷胱甘肽还原酶(GR)活性的影响不大。增添HA后部分或完全解除了喷施NaHS的上述作用。这说明H2S可通过促进AsA合成和增强MDHAR活性提高AsA-GSH循环效率,降低盐碱胁迫对裸燕麦的氧化伤害。  相似文献   

15.
Ascrobate free-radical reductase (EC 1.6.5.4) from potato tubers was purified to apparent homogencity by a method which included ammonium-sulfate precipitation, gel filtration and chromatography on diethylaminoethyl cellulose and hydroxylapatite. Gel filtration and gel electrophoresis showed that the purified enzyme was monomeric with a molecular weight of about 42 000. Enzyme activity was heat lable and severely inhibited by thiol reagents. The Km values for enzyme substrates were estimated.Abbreviations AFR ascorbate free radical - AsA ascorbic acid - DE-32(52) diethylaminoethyl cellulose - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-glycine  相似文献   

16.
17.
Intragastric lipolysis may be particularly important for the digestion of milk lipid since milk fat globules are resistant to pancreatic lipase without prior disruption; milk bile salt stimulated lipase (BSSL) may supplement further intestinal hydrolysis. Previous information on gastric lipolysis has been based primarily on in vitro studies using artificial lipid emulsions containing a single component fatty acid and have focused on the preferential release of medium-chain fatty acids. The actual contribution of these enzymes to overall fat digestion in vivo on natural substrates has rarely been studied, however. The neonatal dog is an excellent model in the study of lipid digestion because, like the human, milk lipids are high in long-chain unsaturated fatty acids, milk contains BSSL and gastric lipase is the predominant lipolytic enzyme acting in the stomach. We used a combination of in vivo studies with in vitro incubations to investigate digestion of milk lipid by gastric and milk (BSSL) lipases in the suckling dog. In the first 4 weeks postpartum, 14-41% and 42-60% of milk triacylglycerol was hydrolyzed to primarily diacylglycerol and free fatty acid (FFA) in the first 30 and 60 min in the stomach, respectively. Milk lipid contained high levels (63%) of long-chain unsaturated fatty acids, which were preferentially released as FFA during in vivo gastric lipolysis, consistent with the actions and stereospecificity of gastric lipase. While levels of hydrolysis in gastric aspirates were significantly different (by age and time in stomach) at the start of in vitro studies, total hydrolysis in all incubation systems plateaued at about 65%, suggesting product inhibition by the long-chain FFA, but to a much lesser degree than previously expected from in vitro studies. The magnitude of in vivo intragastric lipolysis was 3- to 6-times greater than that predicted by in vitro assays using either milk lipid or labeled emulsion as substrate, respectively. Prior exposure to intragastric lipolysis resulted in 30% hydrolysis by BSSL compared to 5% hydrolysis without prior exposure. We suggest that previous in vitro studies have largely underestimated the actual degree of intragastric lipolysis that can occur and its activity on long-chain fatty acids; this study indicates the importance of the combined mechanisms of gastric lipase and BSSL to fat digestion in the suckling neonate.  相似文献   

18.
The difference spectra before and after oxidation of l-ascorbic acid (AsA) by ascorbate oxidase (EC 1.10.3.3) were measured using a recording spectrophotometer. A linear relationship was found between the peak height of difference spectra and the concentration of AsA. The AsA content in plant and animal foods was evaluated by this difference spectral method and was compared with that obtained by the 2,4-dinitrophenylhydrazine method and the indophenol method. The values of AsA estimated by the present method and these official methods agreed well in all samples. The effect of pH and the interference of various compounds on the AsA assay were also examined.  相似文献   

19.
This study investigated the effects of exogenous hydrogen sulfide (H2S) on the redox states of ascorbate (AsA) and glutathione (GSH) in maize leaves under NaCl (100 mM) stress. Salt stress increased the activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), Γ-glutamylcysteine synthetase (Γ-ECS), and L-galactono-1,4-lactone dehydrogenase (GalLDH), malondialdehyde content and electrolyte leakage, and reduced the ratios of reduced and oxidised forms of AsA (AsA/DHA) and GSH (GSH/GSSG) compared with control. Pretreatment with NaHS (H2S donor) further enhanced the activities of the above enzymes except MDHAR and ameliorated the decrease in the ratios of AsA/DHA and GSH/GSSG compared with the salt stress alone. Pretreatment with NaHS significantly reduced the malondialdehyde content and electrolyte leakage induced by the salt stress. Pretreatment with NaHS alone did not affect any of the above mentioned parameters compared with the control. Our results suggest that exogenous H2S could maintain the redox states of ascorbate and glutathione by up-regulating the ascorbate and glutathione metabolism and thus play an important role for acquisition of salt stress tolerance in maize.  相似文献   

20.
Guaiacol peroxidase from spinach catalyzes the oxidation of p-aminophenol to produce the aminophenoxy radical as the primary product which is converted further into a stable oxidation product with an absorption peak at 470 nm. The p-aminophenol radicals oxidize ascorbate (AsA) to produce monodehydroascorbate radicals. Kinetic analysis indicates that p-aminophenol radicals also oxidize monodehydroascorbate to dehydroascorbate. Incubation of AsA peroxidase from tea leaves and hydrogen peroxide with p-aminophenol, p-cresol, hydroxyurea, or hydroxylamine results in the inactivation of the enzyme. No inactivation of the enzyme was found upon incubation of the enzyme with these compounds either in the absence of hydrogen peroxide or with the stable oxidized products of these compounds. The enzyme was protected from inactivation by the inclusion of AsA in the incubation mixture. The radicals of p-aminophenol and hydroxyurea were produced by AsA peroxidase as detected by their ESR signals. These signals disappeared upon the addition of AsA, and the signal characteristic of monodehydroascorbate was found. Thus, AsA peroxidase is inactivated by the radicals of p-aminophenol, p-cresol, hydroxyurea, and hydroxylamine which are produced by the peroxidase reaction, and it is protected from inactivation by AsA via the scavenging of the radicals. Thus, these compounds are the suicide inhibitors for AsA peroxidase. Isozyme II of AsA peroxidase, which is localized in chloroplasts, is more sensitive to these compounds than isozyme I. In contrast to AsA peroxidase, guaiacol peroxidase was not affected by these various compounds, even though each was oxidized by it and the corresponding radicals were produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号