首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor 165 (VEGF165) are potent pro-angiogenic growth factors that play a pivotal role in tumor angiogenesis. The activity of these growth factors is regulated by heparan sulfate (HS), which is essential for the formation of FGF2/FGF receptor (FGFR) and VEGF165/VEGF receptor signaling complexes. However, the structural characteristics of HS that determine activation or inhibition of such complexes are only partially defined. Here we show that ovarian tumor endothelium displays high levels of HS sequences that harbor glucosamine 6-O-sulfates when compared with normal ovarian vasculature where these sequences are also detected in perivascular area. Reduced HS 6-O-sulfotransferase 1 (HS6ST-1) or 6-O-sulfotransferase 2 (HS6ST-2) expression in endothelial cells impacts upon the prevalence of HS 6-O-sulfate moieties in HS sequences, which consist of repeating short, highly sulfated S domains interspersed by transitional N-acetylated/N-sulfated domains. 1–40% reduction in 6-O-sulfates significantly compromises FGF2- and VEGF165-induced endothelial cell sprouting and tube formation in vitro and FGF2-dependent angiogenesis in vivo. Moreover, HS on wild-type neighboring endothelial or smooth muscle cells fails to restore endothelial cell sprouting and tube formation. The affinity of FGF2 for HS with reduced 6-O-sulfation is preserved, although FGFR1 activation is inhibited correlating with reduced receptor internalization. These data show that 6-O-sulfate moieties in endothelial HS are of major importance in regulating FGF2- and VEGF165-dependent endothelial cell functions in vitro and in vivo and highlight HS6ST-1 and HS6ST-2 as potential targets of novel antiangiogenic agents.  相似文献   

2.
Heparan sulfate (HS) is an abundant polysaccharide in the animal kingdom with essential physiological functions. HS is composed of sulfated saccharides that are biosynthesized through a complex pathway involving multiple enzymes. In vivo regulation of this process remains unclear. HS 2-O-sulfotransferase (2OST) is a key enzyme in this pathway. Here, we report the crystal structure of the ternary complex of 2OST, 3′-phosphoadenosine 5′-phosphate, and a heptasaccharide substrate. Utilizing site-directed mutagenesis and specific oligosaccharide substrate sequences, we probed the molecular basis of specificity and 2OST position in the ordered HS biosynthesis pathway. These studies revealed that Arg-80, Lys-350, and Arg-190 of 2OST interact with the N-sulfo groups near the modification site, consistent with the dependence of 2OST on N-sulfation. In contrast, 6-O-sulfo groups on HS are likely excluded by steric and electrostatic repulsion within the active site supporting the hypothesis that 2-O-sulfation occurs prior to 6-O-sulfation. Our results provide the structural evidence for understanding the sequence of enzymatic events in this pathway.  相似文献   

3.
Wang Y  Yu G  Han Z  Yang B  Hu Y  Zhao X  Wu J  Lv Y  Chai W 《FEBS letters》2011,585(24):3927-3934
Lectins are used extensively as research tools to detect and target specific oligosaccharide sequences. Ricinus communis agglutinin I (RCA120) recognizes non-reducing terminal β-d-galactose (Galβ) and its specificities of interactions with neutral and sialylated oligosaccharides have been well documented. Here we use carbohydrate arrays of sulfated Galβ-containing oligosaccharide probes, prepared from marine-derived galactans, to investigate their interactions with RCA120. Our results showed that RCA120 binding to Galβ1–4 was enhanced by 2-O- or 6-O-sulfation but abolished by 4-O-sulfation. The results were corroborated with competition experiments. Erythrina cristagalli lectin is also a Galβ-binding protein but it cannot accommodate any sulfation on Galβ.  相似文献   

4.
The effect of chitosan derivatives with different degrees of polymerization and deamination, as well as of chitosan 6-O-sulfate and chitosanN-succinate-6-O-sulfate, on the reproduction of coliphages T2 and T7 inEscherichia coli and on the growth of this bacterium was studied. Chitosan derivatives decreased the yield of coliphages and exhibited antibacterial activity. The efficiency of inhibition of viral infection and the antibacterial activity of chitosan were found to be dependent on the degree of its polymerization. At the same time, there was no correlation between the degree of chitosan deamination and the extent of inhibition of viral infection. Anionic chitosan derivatives virtually did not possess antiviral or antibacterial activity. It is assumed that chitosan blocks some stages of phage reproduction. The decrease in the phage-producing ability ofE. coli may also be due to the antibacterial effect of chitosan.  相似文献   

5.
Xu T  Xin M  Li M  Huang H  Zhou S  Liu J 《Carbohydrate research》2011,346(15):2445-2450
N,N,N-Trimethyl O-(2-hydroxy-3-trimethylammonium propyl) chitosans (TMHTMAPC) with different degrees of O-substitution were synthesized by reacting O-methyl-free N,N,N-trimethyl chitosan (TMC) with 3-chloro-2-hydroxy-propyl trimethyl ammonium chloride (CHPTMAC). The products were characterized by 1H NMR, FTIR and TGA, and investigated for antibacterial activity against Staphylococcus aureus and Escherichia coli under weakly acidic (pH 5.5) and weakly basic (pH 7.2) conditions. TMHTMAPC exhibited enhanced antibacterial activity compared with TMC, and the activity of TMHTMAPC increased with an increase in the degree of substitution. Divalent cations (Ba2+ and Ca2+) strongly reduced the antibacterial activity of chitosan, O-carboxymethyl chitosan and N,N,N-trimethyl-O-carboxymethyl chitosan, but the repression on the antibacterial activity of TMC and TMHTMAPC was weaker. This indicates that the free amino group on chitosan backbone is the main functional group interacting with divalent cations. The existence of 100 mM Na+ slightly reduced the antibacterial activity of both chitosan and its derivatives.  相似文献   

6.
Human gut symbiont bifidobacteria possess carbohydrate-degrading enzymes that act on the O-linked glycans of intestinal mucins to utilize those carbohydrates as carbon sources. However, our knowledge about mucin type O-glycan degradation by bifidobacteria remains fragmentary, especially regarding how they decompose sulfated glycans, which are abundantly found in mucin sugar-chains. Here, we examined the abilities of several Bifidobacterium strains to degrade a sulfated glycan substrate and identified a 6-sulfo-β-d-N-acetylglucosaminidase, also termed sulfoglycosidase, encoded by bbhII from Bifidobacterium bifidum JCM 7004. A recombinant BbhII protein showed a substrate preference toward 6-sulfated and 3,4-disulfated N-acetylglucosamines over non-sulfated and 3-sulfated N-acetylglucosamines. The purified BbhII directly released 6-sulfated N-acetylglucosamine from porcine gastric mucin and the expression of bbhII was moderately induced in the presence of mucin. This de-capping activity may promote utilization of sulfated glycans of mucin by other bacteria including bifidobacteria, thereby establishing the symbiotic relationship between human and gut microbes.  相似文献   

7.
Hepatic clearance of triglyceride-rich lipoproteins depends on heparan sulfate and low density lipoprotein receptors expressed on the basal membrane of hepatocytes. Binding and uptake of the lipoproteins by way of heparan sulfate depends on the degree of sulfation of the chains based on accumulation of plasma triglycerides and delayed clearance of triglyceride-rich lipoproteins in mice bearing a hepatocyte-specific alteration of N-acetylglucosamine (GlcNAc) N-deacetylase-N-sulfotransferase 1 (Ndst1) (MacArthur, J. M., Bishop, J. R., Stanford, K. I., Wang, L., Bensadoun, A., Witztum, J. L., and Esko, J. D. (2007) J. Clin. Invest. 117, 153–164). Inactivation of Ndst1 led to decreased overall sulfation of heparan sulfate due to coupling of uronyl 2-O-sulfation and glucosaminyl 6-O-sulfation to initial N-deacetylation and N-sulfation of GlcNAc residues. To determine whether lipoprotein clearance depends on 2-O-and 6-O-sulfation, we evaluated plasma triglyceride levels in mice containing loxP-flanked conditional alleles of uronyl 2-O-sulfotransferase (Hs2stf/f) and glucosaminyl 6-O-sulfotransferase-1 (Hs6st1f/f) and the bacterial Cre recombinase expressed in hepatocytes from the rat albumin (Alb) promoter. We show that Hs2stf/fAlbCre+ mice accumulated plasma triglycerides and exhibited delayed clearance of intestinally derived chylomicrons and injected human very low density lipoproteins to the same extent as observed in Ndst1f/fAlbCre+ mice. In contrast, Hs6st1f/fAlbCre+ mice did not exhibit any changes in plasma triglycerides. Chemically modified heparins lacking N-sulfate and 2-O-sulfate groups did not block very low density lipoprotein binding and uptake in isolated hepatocytes, whereas heparin lacking 6-O-sulfate groups was as active as unaltered heparin. Our findings show that plasma lipoprotein clearance depends on specific subclasses of sulfate groups and not on overall charge of the chains.  相似文献   

8.
During the biosynthesis of heparan sulfate (HS), glucuronyl C5-epimerase (Hsepi) catalyzes C5-epimerization of glucuronic acid (GlcA), converting it to iduronic acid (IdoA). Because HS 2-O-sulfotransferase (Hs2st) shows a strong substrate preference for IdoA over GlcA, C5-epimerization is required for normal HS sulfation. However, the physiological significance of C5-epimerization remains elusive. To understand the role of Hsepi in development, we isolated Drosophila Hsepi mutants. Homozygous mutants are viable and fertile with only minor morphological defects, including the formation of an ectopic crossvein in the wing, but they have a short lifespan. We propose that two mechanisms contribute to the mild phenotypes of Hsepi mutants: HS sulfation compensation and possible developmental roles of 2-O-sulfated GlcA (GlcA2S). HS disaccharide analysis showed that loss of Hsepi resulted in a significant impairment of 2-O-sulfation and induced compensatory increases in N- and 6-O-sulfation. Simultaneous block of Hsepi and HS 6-O-sulfotransferase (Hs6st) activity disrupted tracheoblast formation, a well established FGF-dependent process. This result suggests that the increase in 6-O-sulfation in Hsepi mutants is critical for the rescue of FGF signaling. We also found that the ectopic crossvein phenotype can be induced by expression of a mutant form of Hs2st with a strong substrate preference for GlcA-containing units, suggesting that this phenotype is associated with abnormal GlcA 2-O-sulfation. Finally, we show that Hsepi formed a complex with Hs2st and Hs6st in S2 cells, raising the possibility that this complex formation contributes to the close functional relationships between these enzymes.  相似文献   

9.
The influence of chitosan fragments with different degrees of polymerization and some chemical chitosan derivatives on the infectionof Bacillus thuringiensis by phage 1–97 A was studied. It was shown that chitosan inhibits phage infection and inactivates phage particles. The extent of inhibition of phage infection inversely depended on the degree of polymerization of chitosan fragments. On the contrary, the extent of inactivation of phage virulence was proportional to the degree of polymerization. Chitosan derivatives did not inhibit the growth of bacilli. Deaminated chitosan derivatives at a concentration of 100 μg/ml efficiently inhibited phage reproduction, exhibiting no correlation between the degree of deamination and antiviral activity. The anionic derivative chitosan sulfate andN-succinate-6-O-sulfate did not inactivate the phage, did not influence bacterial growth, and did not inhibit the process of viral infection.  相似文献   

10.
11.
Members of the cytosolic sulfotransferase (SULT) SULT2A subfamily are known to be critically involved in the homeostasis of steroids and bile acids. SULT2A8, a 7α-hydroxyl bile acid-preferring mouse SULT, has been identified as the major enzyme responsible for the mouse-specific 7-O-sulfation of bile acids. Interestingly, SULT2A8 lacks a conservative catalytic His residue at position 99th. The catalytic mechanism underlying the SULT2A8-mediated 7-O-sulfation of bile acids thus remained unclear. In this study, we performed a mutational analysis in order to gain insight into this yet-unresolved issue. Results obtained revealed two amino acid residues, His48 and Leu99, that are unique to the mouse SULT2A8, but not other SULTs, are essential for its 7-O-sulfating activity toward bile acids. These findings suggested that substitutions of two amino acids, which might have occurred during the evolution of the mouse SULT2A8 gene, endowed mouse SULT2A8 the capacity to catalyze the 7-O-sulfation of bile acids.  相似文献   

12.
The 9 quaternary ammonium chitosans containing monosaccharides or disaccharides moieties were successfully synthesized by reductive N-alkylation then quaternized by N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (Quat-188). The chemical structures of quaternary ammonium chitosan derivatives were characterized by ATR-FTIR and 1H NMR spectroscopy. The degree of N-substitution (DS) and the degree of quaternization (DQ) were determined by 1H NMR spectroscopic method. It was found that the DS was in the range of 12–40% while the DQ was in the range of 90–97%. The results indicated that the O-alkylation was occured in this condition. Moreover, all quaternary ammonium chitosan derivatives were highly water-soluble at acidic, basic, and neutral pH. Minimum inhibitory concentration (MIC) antibacterial studies of these materials were carried out on Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria compared to quaternary ammonium N-octyl and N-benzyl chitosan derivatives. The quaternary ammonium mono and disaccharide chitosan derivatives showed very high MIC values which were in the range of 32 to >256 μg/mL against both bacteria. Also it was found that the antibacterial activity decreased with increasing the DS. This was due to the increased hydrophilicity of mono and disaccharide moieties. On the other hand, the low MIC values (8–32 μg/mL) were obviously observed when the DS of quaternary ammonium N-octyl and N-benzyl chitosan derivatives was lower than 18%. The results showed that the presence of hydrophobic moiety such as the N-benzyl group enhanced the antibacterial activity compared to the hydrophilic moiety against both bacteria.  相似文献   

13.
6-O-Tosyl (1, d.s. 0.94, 80% yield), 6-deoxy-6-iodo (2, d.s. 0.49, 86% yield) and 6-deoxy (3, d.s. 0.49, 50% yield) derivatives of N-acetylchitosan were prepared, and a 13C CP/MAS NMR spectral analysis was performed because no suitable solvent for 3 was found. The 13C signal for CH3 at C-6 in 3 was detected at 18.9 ppm, and that for C-4 in 1–3 appeared at 72.2–72.7 ppm, which is in a higher magnetic field than those (82.5–86.0 ppm) in N-acetylchitosan, 6-O- (ethylthio), 6-O-(benzylthio)- and 6-O-(methylthio)-thiocarbonyl derivatives, chitosan, and chitin. This strongly suggests a different molecular conformation for 1–3.  相似文献   

14.
Cyclophilin B (CyPB) induces migration and adhesion of T lymphocytes via a mechanism that requires interaction with 3-O-sulfated heparan sulfate (HS). HS biosynthesis is a complex process with many sulfotransferases involved. N-Deacetylases/N-sulfotransferases are responsible for N-sulfation, which is essential for subsequent modification steps, whereas 3-O-sulfotransferases (3-OSTs) catalyze the least abundant modification. These enzymes are represented by several isoforms, which differ in term of distribution pattern, suggesting their involvement in making tissue-specific HS. To elucidate how the specificity of CyPB binding is determined, we explored the relationships between the expression of these sulfotransferases and the generation of HS motifs with CyPB-binding properties. We demonstrated that high N-sulfate density and the presence of 2-O- and 3-O-sulfates determine binding of CyPB, as evidenced by competitive experiments with heparin derivatives, soluble HS, and anti-HS antibodies. We then showed that target cells, i.e. CD4+ lymphocyte subsets, monocytes/macrophages, and related cell lines, specifically expressed high levels of NDST2 and 3-OST3 isoforms. Silencing the expression of NDST1, NDST2, 2-OST, and 3-OST3 by RNA interference efficiently decreased binding and activity of CyPB, thus confirming their involvement in the biosynthesis of binding sequences for CyPB. Moreover, we demonstrated that NDST1 was able to partially sulfate exogenous substrate in the absence of NDST2 but not vice versa, suggesting that both isoenzymes do not have redundant activities but do have rather complementary activities in making N-sulfated sequences with CyPB-binding properties. Altogether, these results suggest a regulatory mechanism in which cell type-specific expression of certain HS sulfotransferases determines the specific binding of CyPB to target cells.  相似文献   

15.
In this study, three kinds of methylated chitosan containing different aromatic moieties were synthesized by two steps, reductive amination and methylation, respectively. The chemical structures of all methylated derivatives, methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride (MDMCMChC), methylated N-(4-N,N-dimethylaminobenzyl) chitosan chloride (MDMBzChC), and methylated N-(4-pyridinylmethyl) chitosan chloride (MPyMeChC) were characterized by ATR–FTIR and 1H NMR spectroscopy. The complexes between the chitosan derivatives and plasmid DNA at different N/P ratios were characterized by gel electrophoresis, dynamic light scattering, and atomic force microscopic techniques. The smallest particle sizes of these complexes were obtained at N/P ratio of 5 and ranged from 95 to 124 nm while the zeta-potentials were in the range of 18–27 mV. Transfection efficiencies of these complexes were investigated by expression of the plasmid DNA encoding green fluorescence protein (pEGFP-C2) on human hepatoma cells (Huh 7 cells) compared to N,N,N-trimethyl chitosan chloride (TMChC). The rank of transfection efficiency was MPyMeChC > MDMBzChC > TMChC > MDMCMChC, respectively. The cytotoxicity of these complexes was also studied by MTT assay where the MPyMeChC complex exhibited less toxicity than other derivatives even at high N/P ratios. Therefore, MPyMeChC demonstrated potential as its safe and efficient gene carrier.  相似文献   

16.
Many protein ligands bind to heparan sulfate, which results in their presentation, protection, oligomerization or conformational activation. Binding depends on the pattern of sulfation and arrangement of uronic acid epimers along the chains. Sulfation at the C3 position of glucosamine is a relatively rare, yet biologically significant modification, initially described as a key determinant for binding and activation of antithrombin and later for infection by type I herpes simplex virus. In mammals, a family of seven heparan sulfate 3-O-sulfotransferases installs sulfate groups at this position and constitutes the largest group of sulfotransferases involved in heparan sulfate formation. However, to date very few proteins or biological systems have been described that are influenced by 3-O-sulfation. This review describes our current understanding of the prevalence and structure of 3-O-sulfation sites, expression and substrate specificity of the 3-O-sulfotransferase family and the emerging roles of 3-O-sulfation in biology.  相似文献   

17.
Heparan sulfate (HS) plays a crucial role in the fibrosis associated with chronic allograft dysfunction by binding and presenting cytokines and growth factors to their receptors. These interactions critically depend on the distribution of 6-O-sulfated glucosamine residues, which is generated by glucosaminyl-6-O-sulfotransferases (HS6STs) and selectively removed by cell surface HS-6-O-endosulfatases (SULFs). Using human renal allografts we found increased expression of 6-O-sulfated HS domains in tubular epithelial cells during chronic rejection as compared with the controls. Stimulation of renal epithelial cells with TGF-β induced SULF2 expression. To examine the role of 6-O-sulfated HS in the development of fibrosis, we generated stable HS6ST1 and SULF2 overexpressing renal epithelial cells. Compared with mock transfectants, the HS6ST1 transfectants showed significantly increased binding of FGF2 (p = 0.0086) and pERK activation. HS6ST1 transfectants displayed a relative increase in mono-6-O-sulfated disaccharides accompanied by a decrease in iduronic acid 2-O-sulfated disaccharide structures. In contrast, SULF2 transfectants showed significantly reduced FGF2 binding and phosphorylation of ERK. Structural analysis of HS showed about 40% down-regulation in 6-O-sulfation with a parallel increase in iduronic acid mono-2-O-sulfated disaccharides. To assess the relevance of these data in vivo we established a murine model of fibrosis (unilateral ureteric obstruction (UUO)). HS-specific phage display antibodies (HS3A8 and RB4EA12) showed significant increase in 6-O-sulfation in fibrotic kidney compared with the control. These results suggest an important role of 6-O-sulfation in the pathogenesis of fibrosis associated with chronic rejection.  相似文献   

18.
The biological properties of Heparan sulfate (HS) polysaccharides essentially rely on their ability to bind and modulate a multitude of protein ligands. These interactions involve internal oligosaccharide sequences defined by their sulfation patterns. Amongst these, the 6-O-sulfation of HS contributes significantly to the polysaccharide structural diversity and is critically involved in the binding of many proteins. HS 6-O-sulfation is catalyzed by 6-O-sulfotransferases (6OSTs) during biosynthesis, and it is further modified by the post-synthetic action of 6-O-endosulfatases (Sulfs), two enzyme families that remain poorly characterized. The aim of the present review is to summarize the contribution of 6-O-sulfates in HS structure/function relationships and to discuss the present knowledge on the complex mechanisms regulating HS 6-O-sulfation.  相似文献   

19.
The methylated N-aryl chitosan derivatives, methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride (MDMCMCh) and methylated N-(4-pyridylmethyl) chitosan chloride (MPyMeCh), were synthesized by two steps, the reductive amination and the methylation. The physicochemical properties of chitosan derivatives were determined by ATR-FTIR, NMR, X-ray diffraction (XRD) and thermogravimetric (TG) techniques. The XRD analysis showed that the crystallinity and thermal stability of methylated chitosan derivatives were lower than those of chitosan. The effects of degree of quaternization (DQ), polymer structure and positive charge location on mucoadhesive property and cytotoxicity were investigated by using a mucin particle method and MTT assay compared to N,N,N-trimethylammonium chitosan chloride (TMChC). It was found that the mucoadhesive property and cytotoxicity increased with increasing DQ. At the DQ of 65%, the mucoadhesive property of the MDMCMCh was twofold lower than that of the TMChC. However, this phenomenon did not affect the mucoadhesive property when the DQ was higher than 65%. Surprisingly, the MPyMeCh showed the lowest toxicity even with the high DQ. These could be due to the resonance effect of the positive charge in the pyridine ring and the molecular weight after methylation. Finally, our result revealed that the mucoadhesive property was dependent on the DQ and polymer structure whereas the cytotoxicity was dependent on the combination of the polymer structure, positive charge location and molecular weight after methylation.  相似文献   

20.
This study focuses on clarifying the contribution of sulfation to radiation-induced apoptosis in human Burkitt’s lymphoma cell lines, using 3′-phosphoadenosine 5′-phosphosulfate transporters (PAPSTs). Overexpression of PAPST1 or PAPST2 reduced radiation-induced apoptosis in Namalwa cells, whereas the repression of PAPST1 expression enhanced apoptosis. Inhibition of PAPST slightly decreased keratan sulfate (KS) expression, so that depletion of KS significantly increased radiation-induced apoptosis. In addition, the repression of all three N-acetylglucosamine-6-O-sulfotransferases (CHST2, CHST6, and CHST7) increased apoptosis. In contrast, PAPST1 expression promoted the phosphorylation of p38 MAPK and Akt in irradiated Namalwa cells. These findings suggest that 6-O-sulfation of GlcNAc residues in KS reduces radiation-induced apoptosis of human Burkitt’s lymphoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号