首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a rapid and specific enumeration method for a trichloroethylene-degrading methanotroph, Methylocystis sp. strain M, based on a most probable number-polymerase chain reaction method for monitoring the bacterium at bioremediation sites. The primers designed for the mmoC gene of the soluble methane monooxygenase gene cluster were specific to strain M. Recovery of the cells with a membrane filter enabled us to detect strain M in trichloroethylene-contaminated groundwater. We used the enumeration method to monitor the number of strain M cells in effluent from soil columns supplied with trichloroethylene-contaminated groundwater. The number of strain M cells in the effluent depended on the amount of the strain M inoculated and the number of cells measured by the most probable number-polymerase chain reaction method was correlated with that measured by a culture method. The detection limit for strain M in effluent detected by MPN-PCR method was 4 to 8 x 10(2) cells/ml.  相似文献   

2.
We developed a method based on real-time PCR for the specific and rapid enumeration of a trichloroethylene-degrading methanotroph, Methylocystis sp. M, with the aim of monitoring the strain in groundwater. A primer set designed from the nucleotide sequence of the mmoC gene of a soluble methane monooxygenase (sMMO) gene cluster from Methylocystis sp. M was specific to amplify the DNA region from the strain and no PCR products were amplified with the sMMO gene clusters from six other methanotroph strains. The real-time PCR reliably quantified Methylocystis sp. M over at least five orders of magnitude (5x10(6) to 5x10(2 )cells/PCR tube, or 2x10(8) to 2x10(4 )cells/ml). Five cells of Methylocystis sp. M per PCR tube (2x10(2 )cells/ml) were detectable when the cells were suspended in distilled water. The concomitant presence of other methanotrophs in samples did not affect the reliability of enumeration; and recovery of the cells with a membrane filter enabled us to quantify cells of the strain in groundwater. This quantification procedure was completed within 3 h, including preparation time of environmental samples. We conclude that real-time PCR using the mmoC primer set can be used practically to analyze the behavior of Methylocystis sp. M at bioremediation sites.  相似文献   

3.
Arsenic contamination from groundwater used to irrigate crops is a major issue across several agriculturally important areas of Asia. Assessing bacterial community composition in highly contaminated sites could lead to the identification of novel bioremediation strategies. In this study, the bacterial community structure and abundance are assessed in agricultural soils with varying levels of arsenic contamination at Ambagarh Chauki block, Chhattisgarh, India, based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of the 16S rRNA gene and the most probable number-polymerase chain reaction (MPN-PCR). The results revealed that the bacterial communities of arsenic-contaminated soils are dominated by β-proteobacteria (36%), γ-proteobacteria (21%), δ-proteobacteria (11%), α-proteobacteria (11%), and Bacteroidetes (11%). The bacterial composition of high arsenic-contaminated soils differed significantly from that of low arsenic-contaminated soils. The Proteobacteria appeared to be more resistant to arsenic contamination, while the Bacteroidetes and Nitrospirae were more sensitive to it. The bacterial abundance determined by MPN-PCR decreased significantly as As-toxicity increased. In addition to As, other trace metals, like Pb, U, Cu, Ni, Sn, Zn and Zr, significantly ( p < 0.01) explain the changes in bacterial structural diversity in agricultural soils with different level of arsenic contamination, as determined by canonical correspondence analysis (CCA).  相似文献   

4.
The soluble MMO (sMMO) gene clusters from group I methanotrophs were characterized. An 8.1-kb KpnI fragment from Methylomonas sp. strain KSWIII and a 7.5-kb SalI fragment from Methylomonas sp. strain KSPIII which contained the sMMO gene clusters were cloned and sequenced. The sequences of these two fragments were almost identical. The sMMO gene clusters in the fragment consisted of six open reading frames which were 52 to 79% similar to the corresponding genes of previously described sMMO gene clusters of the group II and group X methanotrophs. The phylogenetic analysis of the predicted amino acid sequences of sMMO demonstrated that the sMMOs from these strains were closer to that from M. capsulatus Bath in the group X methanotrophs than to those from Methylosinus trichosporium OB3b and Methylocystis sp. strain M in the group II methanotrophs. Based on the sequence data of sMMO genes of our strains and other methanotrophs, we designed a new PCR primer to amplify sMMO gene fragments of all the known methanotrophs harboring the mmoX gene. The primer set was successfully used for detecting methanotrophs in the groundwater of trichloroethylene-contaminated sites during in situ-biostimulation treatments.  相似文献   

5.
The soluble MMO (sMMO) gene clusters from group I methanotrophs were characterized. An 8.1-kb KpnI fragment from Methylomonas sp. strain KSWIII and a 7.5-kb SalI fragment from Methylomonas sp. strain KSPIII which contained the sMMO gene clusters were cloned and sequenced. The sequences of these two fragments were almost identical. The sMMO gene clusters in the fragment consisted of six open reading frames which were 52 to 79% similar to the corresponding genes of previously described sMMO gene clusters of the group II and group X methanotrophs. The phylogenetic analysis of the predicted amino acid sequences of sMMO demonstrated that the sMMOs from these strains were closer to that from M. capsulatus Bath in the group X methanotrophs than to those from Methylosinus trichosporium OB3b and Methylocystis sp. strain M in the group II methanotrophs. Based on the sequence data of sMMO genes of our strains and other methanotrophs, we designed a new PCR primer to amplify sMMO gene fragments of all the known methanotrophs harboring the mmoX gene. The primer set was successfully used for detecting methanotrophs in the groundwater of trichloroethylene-contaminated sites during in situ-biostimulation treatments.  相似文献   

6.
A chlorobenzoate-degrading Alcaligenes strain, BR60, was introduced to flowthrough lake microcosms and exposed to 3-chlorobenzoate (3Cba) concentrations from 0 to 25 μM. A DNA probe specific for BR60 chlorobenzoate catabolic genes was used with the most probable number (MPN) technique to enumerate bacteria harboring this genetic information. This MPN-DNA hybridization method combined with [U-14C]3Cba uptake rate measurements allowed the correlation of the size and activity of a specific catabolic population in a natural mixed community for the first time. An experiment involving the release of a streptomycin-resistant strain of BR60 indicated that estimates of bacteria carrying the introduced catabolic genotype often outnumbered plate count estimates of viable BR60 by as much as 3 orders of magnitude, particularly when 3Cba inputs were high. The MPN-DNA hybridization method provided catabolic population estimates highly correlated to 3Cba exposure levels and the [U-14C]3Cba uptake rates in the microcosms. Plate counts of BR60 were poorly correlated with both 3Cba exposure levels and uptake rates. In the absence of chlorobenzoate selection, the catabolic genotype declined to very low levels by the MPN-DNA hybridization technique after 8 weeks in the microcosms.  相似文献   

7.
Luan X  Chen J  Liu Y  Li Y  Jia J  Liu R  Zhang XH 《Current microbiology》2008,57(3):218-221
This study aimed to adopt MPN-PCR (most probable number-polymerase chain reaction) for rapid detection of the quantity of Vibrio parahaemolyticus in seafood. V. parahaemolyticus in seafood could be quantitated by MPN statistics according to PCR products. The sensitivity of MPN-PCR was 100 times higher than that of direct PCR. Of 225 seafood samples from Qingdao, 165 were positive for the presence of V. parahaemolyticus, with an MPN value of >719 per gram, and about 41.5% of samples were positive for tdh gene-possessing cells. Eighty muscle tissues from the 225 seafood samples were investigated by direct PCR and MPN-PCR, but no V. parahaemolyticus was detected. The MPN-PCR test could be completed in less than 16 h from the time of sample preparation. It was rapid, sensitive, and reliable for comprehensive detection and quick quantitative determination of V. parahaemolyticus in seafood and it revealed the potential risk of illness associated with their consumption.  相似文献   

8.
AIMS: Pseudomonas spp. are considered the most important milk spoilage organisms. Here we describe development of a fluorescence in situ hybridization (FISH) probe specific for detection and enumeration of Pseudomonas spp. in milk. METHODS AND RESULTS: 16S rRNA sequences were analysed to develop specific oligonucleotide probe for the genus Pseudomonas. Twenty different Pseudomonas spp. and 23 bacterial species from genera other than Pseudomonas (as negative controls) were tested. All tested Pseudomonas spp. yielded a positive FISH reaction, whereas negative controls showed no FISH reaction except for Burkholderia cepacia that showed a relatively weak FISH reaction. The FISH assay specifically stains Pseudomonas in milk when the milk contains a mixture of other bacterial species. The FISH assay takes 2 h and compares favourably with current culturing methods, which take a minimum of 48 h. Specificity of the probe was validated using polymerase chain reaction to selectively amplifying the Pseudomonas rDNA gene and sequencing the gene products. CONCLUSIONS: The method presented in this study allows simultaneously detection, identification and enumeration of Pseudomonas spp. in milk. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid and accurate enumeration of Pseudomonas facilitates the identification of specific contamination sources in dairy plants, the accurate validation of pasteurization treatments and the prediction of shelf life of processed milk.  相似文献   

9.
Previous bacterial transport studies have utilized fluorophores which have been shown to adversely affect the physiology of stained cells. This research was undertaken to identify alternative fluorescent stains that do not adversely affect the transport or viability of bacteria. Initial work was performed with a groundwater isolate, Comamonas sp. strain DA001. Potential compounds were first screened to determine staining efficiencies and adverse side effects. 5-(And 6-)-carboxyfluorescein diacetate, succinimidyl ester (CFDA/SE) efficiently stained DA001 without causing undesirable effects on cell adhesion or viability. Members of many other gram-negative and gram-positive bacterial genera were also effectively stained with CFDA/SE. More than 95% of CFDA/SE-stained Comamonas sp. strain DA001 cells incubated in artificial groundwater (under no-growth conditions) remained fluorescent for at least 28 days as determined by epifluorescent microscopy and flow cytometry. No differences in the survival and culturability of CFDA/SE-stained and unstained DA001 cells in groundwater or saturated sediment microcosms were detected. The bright, yellow-green cells were readily distinguished from autofluorescing sediment particles by epifluorescence microscopy. A high throughput method using microplate spectrofluorometry was developed, which had a detection limit of mid-105 CFDA-stained cells/ml; the detection limit for flow cytometry was on the order of 1,000 cells/ml. The results of laboratory-scale bacterial transport experiments performed with intact sediment cores and nondividing DA001 cells revealed good agreement between the aqueous cell concentrations determined by the microplate assay and those determined by other enumeration methods. This research indicates that CFDA/SE is very efficient for labeling cells for bacterial transport experiments and that it may be useful for other microbial ecology research as well.  相似文献   

10.
A miniaturized most probable number (MPN) method for the selective enumeration of three bacteria species ( Lactobacillus plantarum A6, Leuconostoc mesenteroides and Lactococcus lactis ) is described. This selective count method, based on specific consumption of carbon substrate and resistance to antibiotics, was used for the quantitative assessment of the three bacteria during mixed cultures in a model cassava fermentation. A typical microbial succession pattern was observed: (i) Lactococcus lactis and Leuc. mesenteroides dominated during the first hours of fermentation as their growth was very rapid ; (ii) from hour 12, Lactobacillus plantarum replaced the two latter strains and Lactococcus lactis disappeared gradually, followed by Leuc. mesenteroides . The growth rates of each strain appeared to be independent of the others, while acidification rates increased strongly in mixed cultures compared with pure cultures. No positive interactions resulting from the amylolytic character of Lactobacillus plantarum A6, and no negative interactions resulting from the Nis+ property of Lactococcus lactis , were revealed between the three strains under the model conditions used.  相似文献   

11.
Microbial nitrate-dependent Fe(II) oxidation is known to contribute to iron biogeochemical cycling; however, the microorganisms responsible are virtually unknown. In an effort to elucidate this microbial metabolic process in the context of an environmental system, a 14-cm sediment core was collected from a freshwater lake and geochemically characterized concurrently with the enumeration of the nitrate-dependent Fe(II)-oxidizing microbial community and subsequent isolation of a nitrate-dependent Fe(II)-oxidizing microorganism. Throughout the sediment core, ambient concentrations of Fe(II) and nitrate were observed to coexist. Concomitant most probable number enumeration revealed the presence of an abundant nitrate-dependent Fe(II)-oxidizing microbial community (2.4 x 10(3) to 1.5 x 10(4) cells g(-1) wet sediment) from which a novel anaerobic, lithoautotrophic, Fe(II)-oxidizing bacterium, strain 2002, was isolated. Analysis of the complete 16S rRNA gene sequence revealed that strain 2002 was a member of the beta subclass of the proteobacteria with 94.8% similarity to Chromobacterium violaceum, a bacterium not previously recognized for the ability to oxidize nitrate-dependent Fe(II). Under nongrowth conditions, both strain 2002 and C. violaceum incompletely reduced nitrate to nitrite with Fe(II) as the electron donor, while under growth conditions nitrate was reduced to gaseous end products (N2 and N2O). Lithoautotrophic metabolism under nitrate-dependent Fe(II)-oxidizing conditions was verified by the requirement of CO2 for growth as well as the assimilation of 14C-labeled CO2 into biomass. The isolation of strain 2002 represents the first example of an anaerobic, mesophilic, neutrophilic Fe(II)-oxidizing lithoautotroph isolated from freshwater samples. Our studies further demonstrate the abundance of nitrate-dependent Fe(II) oxidizers in freshwater lake sediments and provide further evidence for the potential of microbially mediated Fe(II) oxidation in anoxic environments.  相似文献   

12.
Abstract: A method based on the polymerase chain reaction (PCR) was developed for a rapid and specific detection of toluene degradative genes in soil. The xylE gene coding for catechol 2,3-dioxygenase was chosen as a target gene. The detection threshold was evaluated in microcosms using a sterilized standard soil inoculated with various amounts of a degradative strain of Pseudomonas putida (mX). The extracted DNA was used as a template to amplify the xylE gene. PCR followed by hybridization with an internal probe allowed us to detect 102 bacteria per g of soil. In polluted soils, quantification of target DNA by competitive PCR was compared with enumeration of degradative microflora. This molecular method appeared to be rapid, sensitive and more suitable than the microbiological approach to estimate the biodegradative potential of a polluted soil.  相似文献   

13.
The fluorogenic probe assay, competitive polymerase chain reaction (PCR) and co-extraction with internal standard cells were combined to develop a rapid, sensitive, and accurate quantification method for the copy number of a target carbazole 1,9a-dioxygenase gene (carAa) and the cell number of Pseudomonas sp. strain CA10. The internal standard DNA was modified by replacement of a 20-bp long region with one for binding a specific probe in fluorogenic PCR (TaqMan). The resultant DNA fragment was similar to the corresponding region of the intact carAa gene in terms of G+C content. When used as a competitor in the PCR reaction, the internal standard DNA was distinguishable from the target carAa gene by two specific fluorogenic probes with different fluorescence labels, and was automatically detected in a single tube using the ABI7700 sequence detection system. To minimize variations in the efficiency of cell lysis and DNA extraction between the samples, the co-extraction method was combined. A mini-transposon was used to introduce competitor DNA into the genome of other pseudomonads, and the resultant construct was used as the standard cell. After the addition of a fixed amount of the internal standard cells to soil samples, total DNA was extracted (co-extraction). Using this method, the copy number of the carAa gene and the cell number of strain CA10 in soil samples could be quantified rapidly.  相似文献   

14.
Having previously determined the complete amino acid sequence of 2-keto-4-hydroxyglutarate aldolase from Escherichia coli (C. J. Vlahos and E. E. Dekker, J. Biol. Chem. 263:11683-11691, 1988), we amplified the gene that codes for this enzyme by the polymerase chain reaction using synthetic degenerate deoxyoligonucleotide primers. The amplified DNA was sequenced by subcloning the polymerase chain reaction products into bacteriophage M13; the nucleotide sequence of the gene was found to be in exact agreement with the amino acid sequence of the gene product. Overexpression of the gene was accomplished by cloning it into the pKK223.3 expression vector so that it was under control of the tac promoter and then using the resultant plasmid, pDP6, to transform E. coli DH5 alpha F'IQ. When this strain was grown in the presence of isopropyl beta-D-thiogalactopyranoside, aldolase specific activity in crude extracts was 80-fold higher than that in wild-type cells and the enzyme constituted approximately 30% of the total cellular protein. All properties of the purified, cloned gene product, including cross-reactivity with antibodies elicited against the wild-type enzyme, were identical with the aldolase previously isolated and characterized. A strain of E. coli in which this gene is inactivated was prepared for the first time by insertion of the kanamycin resistance gene cartridge into the aldolase chromosomal gene.  相似文献   

15.
Understanding the transport and behavior of bacteria in the environment has broad implications in diverse areas, ranging from agriculture to groundwater quality, risk assessment, and bioremediation. The ability to reliably track and enumerate specific bacterial populations in the context of native communities and environments is key to developing this understanding. We report a novel bacterial tracking approach, based on altering the stable carbon isotope value (δ13C) of bacterial cells, which provides specific and sensitive detection and quantification of those cells in environmental samples. This approach was applied to the study of bacterial transport in saturated porous media. The transport of introduced organisms was indicated by mass spectrometric analysis of groundwater samples, where the presence of 13C-enriched bacteria resulted in increased δ13C values of the samples, allowing specific and sensitive detection and enumeration of the bacteria of interest. We demonstrate the ability to produce highly 13C-enriched bacteria, present data indicating that results obtained with this approach accurately represent intact introduced bacteria, and include field data on the use of this stable isotope approach to monitor in situ bacterial transport. This detection strategy allows sensitive detection of an introduced, unmodified bacterial strain in the presence of the indigenous bacterial community, including itself in its unenriched form.  相似文献   

16.
The specific binding of DCMU and atrazine to the thylakoid membranes of a uniparentally inherited DCMU-resistant mutant dr-416 of Chlamydomonas reinhardii was measured. Whole cells of the mutant can tolerate a 15-fold concentration of DCMU as compared to the parent strain. The same tolerance is found for the photosystem II activity of isolated thylakoid membranes. The mutant is not resistant against atrazine. In equilibrium-binding studies with [14C]atrazine and unlabelled DCMU, the specific binding for atrazine was found to be identical in the mutant and in the parent strain. The competitive binding of DCMU is significantly weaker for membranes of the mutant than of the parent strain, the equilibrium dissociation constants being 2.0 × 10?7 M and 3.8 × 10?8 M, respectively.  相似文献   

17.
【目的】以内蒙古辉腾锡勒草原九十九泉湿地为对象,研究湖泊干涸过程中氨氧化微生物的群落结构及其变化。【方法】通过MPN-PCR定量测定氨氧化古菌(AOA)和氨氧化细菌(AOB)的数量;构建amoA基因克隆文库,进行系统发育分析;结合土壤环境因子,探讨湿地退化过程中影响氨氧化微生物的潜在因素。【结果】依湖泊湿地退水梯度的不同样点中,有75%的样点AOB的数量高于AOA,AOB与AOA的数量比率为0.3-18.1。从湖心到湖岸草原带,AOA和AOB的数量有明显增加,但生物多样性呈降低趋势,二者没有呈现正相关。研究发现,AOB的数量与土壤中NH 4+-N的变化存在良好响应。系统发育分析显示,退化湖泊湿地AOA克隆序列均来自于泉古菌门(Crenarchaeota);AOB的amoA基因的克隆序列大部分与亚硝化单胞菌属(Nitrosomonas)有一定同源性,较少部分与亚硝化螺菌属(Nitrosospira)有一定同源性。【结论】湖泊退水过程增加了湿地土壤氨氧化微生物的数量,而氨氧化微生物的种群丰度有所降低。AOA和AOB群落对湖泊湿地的退化过程做出了响应,其中AOB的响应较为明显,氧化条件和土壤铵浓度的改变可能是促成这种响应的重要原因。  相似文献   

18.
Groundwater samples from 200- to 950-m depths in four igneous rock sites in Finland were investigated for different metabolic groups of microorganisms, and the data were compared with the available geochemical record. Samples were collected with a pressurized groundwater sampling system developed for gas and microbiological sampling. Two of the sites had groundwater that was fresh, with &lt; 0.2 g/l dissolved solids, whereas that at the two other sites was much more saline, reaching a maximum of 24 g/l dissolved solids. The groundwater contained gases, 33 to 340 ml/l, with nitrogen or methane dominating. Total cell numbers were 10 5 to 10 6 cells/ml, which is typical for deep igneous rock aquifers. Growth media were designed to mimic the actual groundwater chemistry at each sampling point and used for most probable number enumeration of methanogens, acetogens, sulfate-reducing bacteria (SRB), and iron-reducing bacteria (IRB). SRB predominated in sites where iron sulfide fracture-filling minerals are common. IRB were the main population in one site where iron sulfide fracture minerals are not present, but iron hydroxide fracture minerals predominate. Fracture-filling minerals were a better indicator of microbial populations than was groundwater chemistry. Low numbers of autotrophic methanogens were cultured. One of several possible interpretations of stable isotope data suggested that most of the detected methane is thermogenic, which would correlate with few active methanogens. However, we concluded other interpretations were also possible.  相似文献   

19.
Self-sustaining, regenerative life-support systems are required for long duration missions to the Moon and Mars. Improved activity of nitrifying bacteria to convert NH4+ to NO3- has been shown to promote plant growth in zeoponic substrates. Due to physiological characteristics, such as slow growth and low yield, nitrifying bacteria are not easily enumerated by traditional microbiological techniques. A method for rapid detection and enumeration of a commercial inoculum of nitrifying bacteria in a zeoponic substrate was developed using a polymerase chain reaction (PCR)-most probable number (MPN) approach. Samples from four-week laboratory incubation studies were processed to extract their total microbial community DNA and the sequences specific to 16s rRNA of Nitrobacter spp. were PCR amplified. The detection limit of the methodology was 2,000 Nitrobacter cells per assay. The quantitative assay demonstrated that the zeoponic substrate was capable of supporting 105 to 106 MPN Nitrobacter cells per gram of substrate. The PCR-MPN method can be an effective and rapid approach to enumerate nitrifying bacteria in zeoponic substrates.  相似文献   

20.
Rolling circle amplification (RCA) generates large single-stranded and tandem repeats of target DNA as amplicons. This technique was applied to in situ nucleic acid amplification (in situ RCA) to visualize and count single Escherichia coli cells carrying a specific gene sequence. The method features (i) one short target sequence (35 to 39 bp) that allows specific detection; (ii) maintaining constant fluorescent intensity of positive cells permeabilized extensively after amplicon detection by fluorescence in situ hybridization, which facilitates the detection of target bacteria in various physiological states; and (iii) reliable enumeration of target bacteria by concentration on a gelatin-coated membrane filter. To test our approach, the presence of the following genes were visualized by in situ RCA: green fluorescent protein gene, the ampicillin resistance gene and the replication origin region on multicopy pUC19 plasmid, as well as the single-copy Shiga-like toxin gene on chromosomes inside E. coli cells. Fluorescent antibody staining after in situ RCA also simultaneously identified cells harboring target genes and determined the specificity of in situ RCA. E. coli cells in a nonculturable state from a prolonged incubation were periodically sampled and used for plasmid uptake study. The numbers of cells taking up plasmids determined by in situ RCA was up to 106-fold higher than that measured by selective plating. In addition, in situ RCA allowed the detection of cells taking up plasmids even when colony-forming cells were not detected during the incubation period. By optimizing the cell permeabilization condition for in situ RCA, this method can become a valuable tool for studying free DNA uptake, especially in nonculturable bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号