首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细菌的运动性是影响其生存及致病的一个关键条件,同时也为合成和开发仿生运动体、微型机器人等提供了有效的模型.趋磁细菌具有胞内磁小体从而能够感知磁场的变化,进而影响其运动行为.目前,这种外部磁场与生物体的远程响应模式已在环境、医疗、材料等领域有广泛应用.因此,聚焦于趋磁细菌的运动特性,综述了趋磁细菌运动行为的表征、运动机理...  相似文献   

2.
趋磁细菌及其应用于生物导航的研究进展   总被引:2,自引:2,他引:0       下载免费PDF全文
趋磁性细菌是一种由于体内含有对磁场具有敏感性的磁小体,而能够沿着磁力线运动的特殊细菌,本文综述了趋磁细菌的分布、分类、特性、磁小体研究以及趋磁细菌在生物导航方面的研究进展。  相似文献   

3.
Magnetospirillum sp. strain AMB-1 is a Gram-negative -proteobacteriumthat synthesizes nano-sized magnetites, referred to as magnetosomes,aligned intracellularly in a chain. The potential of this nano-sizedmaterial is growing and will be applicable to broad researchareas. It has been expected that genome analysis would elucidatethe mechanism of magnetosome formation by magnetic bacteria.Here we describe the genome of Magnetospirillum sp. AMB-1 wildtype, which consists of a single circular chromosome of 4967148bp. For identification of genes required for magnetosome formation,transposon mutagenesis and determination of magnetosome membraneproteins were performed. Analysis of a non-magnetic transposonmutant library focused on three unknown genes from 2752 unknowngenes and three genes from 205 signal transduction genes. Partialproteome analysis of the magnetosome membrane revealed thatthe membrane contains numerous oxidation/reduction proteinsand a signal response regulator that may function in magnetotaxis.Thus, oxidation/reduction proteins and elaborate multidomainsignaling proteins were analyzed. This comprehensive genomeanalysis will enable resolution of the mechanisms of magnetosomeformation and provide a template to determine how magnetic bacteriamaintain a species-specific, nano-sized, magnetic single domainand paramagnetic morphology.  相似文献   

4.
何世颖  顾宁 《生物磁学》2006,6(1):19-21
趋磁性细菌是一种由于体内含有对磁场具有敏感性的磁小体,而能够沿着磁力线运动的特殊细菌,本文综述了趋磁细菌的分布、分类、特性、磁小体研究以及趋磁细菌在生物导航方面的研究进展.  相似文献   

5.
Understanding the biogeochemical cycle of the highly toxic element mercury (Hg) is necessary to predict its fate and transport. In this study, we determined that biogenic magnetite isolated from Magnetospirillum gryphiswaldense MSR-1 and Magnetospirillum magnetotacticum MS-1 was capable of reducing inorganic mercury [Hg(II)] to elemental mercury [Hg(0)]. These two magnetotactic bacteria (MTB) lacked mercuric resistance operons in the genomes. However, they revealed high resistance to Hg(II) under atmospheric conditions and an even higher resistance under microaerobic conditions (1% O2 and 99% N2). Neither strain reduced Hg(II) to Hg(0) under atmospheric conditions. However, a slow rate (0.05–0.21 µM·d?1) of Hg(II) loss occurred from late log phase to stationary phase in two MTBs' culture media under microaerobic conditions. Increased Hg(II) entered both cells under microaerobic conditions relative to atmospheric conditions. The majority of Hg(II) was still blocked by the cell membrane. Hg(II) reduction was more effective when biogenic magnetite was extracted out, with or without the magnetosome membrane envelope. When magnetosome membrane was present, 8.55–13.53% of 250 nM Hg(II) was reduced to Hg(0) by 250 mg/L biogenic magnetite suspension within 2 hours. This ratio increased to 55.07–64.70% while magnetosome membrane was removed. We concluded that two MTBs contributed to the reduction of Hg(II) to Hg(0) at a slow rate in vivo. Such reduction was more favorable to occur when biogenic magnetite is released from dead cells. It proposed a new biotic pathway for the formation of Hg(0) in aquatic systems.  相似文献   

6.
趋磁细菌(MTB)依赖于体内磁小体结构在磁场中取向,多个磁小体以一定的组 织形式排列是形成菌体内生物磁罗盘的重要环节.多数趋磁细菌中磁小体成链排列,有效增加了细胞磁偶极矩,从而使菌体表现出在环境磁场中定向的能力.趋磁螺菌M. magneticum AMB-1和M. gryphiswaldense MSR-1中磁小体均沿细胞长轴形成一条磁 小体链.通过对相关基因突变体表型的研究,结合对磁小体链形成过程的实时动态观 察,人们已初步了解MamJ、MamK和MamA等基因在磁小体链装配和维护过程中的功能.本文介绍了近年来趋磁螺菌磁小体链装配过程中重要功能性基因的研究进展,并重点分析了AMB-1和MSR-1中磁小体链装配的差异.  相似文献   

7.

We studied the sites of gold and silver trapping by uncultured magnetotactic cocci from microcosms using transmission electron microscopy and energy-dispersive X-ray analysis. Two morphotypes were found to trap gold or silver. Morphotype 1 had large magnetite crystals frequently twinned in an unusual way and contained phosphorus-rich granules and electron-lucent inclusions probably composed of polyhydroxyalkanoates. Morphotype 2 presented smaller crystals with smaller width/length ratios and granules containing C, O, P, S, Cl, Na, Mg, Ca, and Fe, called phosphorus-sulfur-iron granules due to the presence of relatively large amounts of phosphorus, sulfur and iron. Gold was found in morphotype 2 bacteria, mainly in phosphorus-sulfur-iron granules. Additionally, the capsule presented small deposits that seemed to be composed of elemental gold. Silver was found in both spherical and rosette-shaped crystalline deposits also containing sulfur at the cell envelope of morphotype 1 bacteria. The rosette-shaped deposits had six subunits, suggesting that a homohexameric macromolecular assembly might be involved in their nucleation process. This seems to be an example of a highly organized structure mineralized incidentally by a biologically induced biomineralization process.  相似文献   

8.
9.
Magnetotactic bacteria (MTB) are a group of Gram‐negative microorganisms that are able to sense and change their orientation in accordance with the geomagnetic field. This unique capability is due to the presence of a special suborganelle called the magnetosome, composed of either a magnetite or gregite crystal surrounded by a lipid membrane. MTB were first detected in 1975 and since then numerous efforts have been made to clarify the special mechanism of magnetosome formation at the molecular level. Magnetosome formation can be divided into several steps, beginning with vesicle invagination from the cell membrane, through protein sorting, followed by the combined steps of iron transportation, biomineralization, and the alignment of magnetosomes into a chain. The magnetosome‐chain enables the sensing of the magnetic field, and thus, allows the MTB to navigate. It is known that magnetosome formation is tightly controlled by a distinctive set of magnetosome‐associated proteins that are encoded mainly in a genomically conserved region within MTB called the magnetosome island (MAI). Most of these proteins were shown to have an impact on the magnetism of MTB. Here, we describe the process in which the magnetosome is formed with an emphasis on the different proteins that participate in each stage of the magnetosome formation scheme.  相似文献   

10.
徐丛  张文燕  陈一然  张蕊  董逸  杜海舰  潘红苗  肖天 《生态学报》2016,36(14):4346-4354
在青岛太平湾潮间带沉积物中发现了一定量的海洋趋磁细菌,最大丰度可达350个/cm~3。透射电镜观察发现该区域趋磁细菌均为趋磁球菌。磁小体个体形状单一,皆是立方体状;磁小体排列方式多样,以链状排列为主,包括单链、双链与多链,也有少数成簇排列。EDS结果表明,磁小体成分为四氧化三铁。据估算,趋磁细菌的铁元素含量(干重)范围在0.40%—6.91%之间,平均为2.19%。通过16S rRNA基因文库的构建与测序得到了47个趋磁细菌序列,分属13个OTU。系统发育分析结果表明,它们都属于α-变形菌纲,其中9个OTU与已知最相似序列的相似性低于97%,有5个OTU与已知最相似序列的相似性低于93%,可能代表了趋磁细菌的9个新种、5个新属,说明该区域潜在的微生物新种质资源十分可观。  相似文献   

11.
12.
We studied the geochemical properties of sediment layers where the gregite-producing multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis exists. The ratio of iron and bioavailable sulfur concentrations regulates the population density of this microorganism. The population density can reach 8.5 × 102 cells/cm3 at an iron to sulfur ratio of 0.5. In iron- and sulfur-rich environments, microorganisms concentrated in the upper region of the oxic-anoxic zone, following an increasing nitrogen gradient with a lower isotopic 15N/14N ratio. Candidatus Magnetoglobus multicellularis prefers environmental conditions that favor the biomineralization of greigite, but in situations where the nutrient availability is low, it moves to more suitable sites.  相似文献   

13.
Magnetosomes are prokaryotic organelles produced by magnetotactic bacteria that consist of nanometer-sized magnetite (Fe3O4) or/and greigite (Fe3S4) magnetic crystals enveloped by a lipid bilayer membrane. In magnetite-producing magnetotactic bacteria, proteins present in the magnetosome membrane modulate biomineralization of the magnetite crystal. In these microorganisms, genes that encode for magnetosome membrane proteins as well as genes involved in the construction of the magnetite magnetosome chain, the mam and mms genes, are organized within a genomic island. However, partially because there are presently no greigite-producing magnetotactic bacteria in pure culture, little is known regarding the greigite biomineralization process in these organisms including whether similar genes are involved in the process. Here using culture-independent techniques, we now show that mam genes involved in the production of magnetite magnetosomes are also present in greigite-producing magnetotactic bacteria. This finding suggest that the biomineralization of magnetite and greigite did not have evolve independently (that is, magnetotaxis is polyphyletic) as once suggested. Instead, results presented here are consistent with a model in which the ability to biomineralize magnetosomes and the possession of the mam genes was acquired by bacteria from a common ancestor, that is, the magnetotactic trait is monophyletic.  相似文献   

14.
Scanning transmission X-ray microscopy at the Fe 2p (L2,3), O1s, C1s, and S2p edges was used to study greigite magnetosomes and other cellular content of a magnetotactic bacterium known as a multicellular magnetotactic prokaryote (MMP). X-ray absorption spectrum (XAS) and X-ray magnetic circular dichroism (XMCD) spectra of greigite (Fe3S4) nanoparticles, synthesized via a hydrothermal method, were measured. Although XAS of the synthetic greigite nanoparticles and biotic magnetosome crystals in MMPs are slightly different due to partial oxidation of the MMP greigite, the XMCD spectra of the two materials are in good agreement. The Fe 2p XAS and XMCD spectra of Fe3S4 are quite different from those of its oxygen analog, magnetite (Fe3O4), suggesting Fe3S4 has a different electronic and magnetic structure than Fe3O4 despite having the same crystal structure. Sulfate and sulfide species were also identified in MMPs, both of which are likely involved in sulfur metabolism.  相似文献   

15.
Magnetotactic bacteria synthesize uniform-sized and regularly shaped magnetic nanoparticles in their organelles termed magnetosomes. Homeostasis of the magnetosome lumen must be maintained for its role accomplishment. Here, we developed a method to estimate the pH of a single living cell of the magnetotactic bacterium Magnetospirillum magneticum AMB-1 using a pH-sensitive fluorescent protein E2GFP. Using the pH measurement, we estimated that the cytoplasmic pH was approximately 7.6 and periplasmic pH was approximately 7.2. Moreover, we estimated pH in the magnetosome lumen and cytoplasmic surface using fusion proteins of E2GFP and magnetosome-associated proteins. The pH in the magnetosome lumen increased during the exponential growth phase when magnetotactic bacteria actively synthesize magnetite crystals, whereas pH at the magnetosome surface was not affected by the growth stage. This live-cell pH measurement method will help for understanding magnetosome pH homeostasis to reveal molecular mechanisms of magnetite biomineralization in the bacterial organelle.  相似文献   

16.
Bioconvection in suspensions of Tetrahymena pyriformis and Crypthecodinium cohnii is described and 2 new patterns, the toroid and the cat's-eye, which appear in shallow suspensions of C. cohnii, are reported. Except in very dense cultures, bioconvection does not arise unless the depth of the suspensions or the mean concentration exceed certain critical values, other things being equal. A mathematical model describing the hydrodynamics of suspension of negatively geotactic microorganisms is described which predicts the existence of critical depths and concentrations. The equations presented admit solutions describing the “polka-dot” patterns seen at low organism concentration in suspensions slightly deeper than the critical value. The discussion here is limited to the case of fairly dilute suspensions, but the basic approach can be applied also to richer cultures.  相似文献   

17.
张琛  王勇  张美文 《动物学杂志》2019,54(3):311-320
东方田鼠(Microtus fortis)是一种栖息于湿地生境的小型哺乳动物,为了解其水生运动适应,作者在实验室内观察和测试了该鼠的游泳行为、皮毛防水性能和长时间游泳能力。结果发现,东方田鼠主要在水面游泳,亦能潜水,游泳姿势是狗刨式,并主要以后肢交替划水提供推进力,速度约为0.37 m/s。在20℃水温条件下,东方田鼠皮毛表现出良好的防水性能,且防水性能与其年龄及体重均存在极显著的负相关关系(P 0.01,R~2=0.805);东方田鼠具有平均约持续5 h以上的长时间游泳能力,且长时间游泳能力与其皮毛防水性能存在极显著的正相关关系(P 0.01,R~2=0.682);上述两项指标性别差异显著。这表明,东方田鼠有较强的水中运动能力和长时间游泳能力,具有水生运动方面的适应性进化,有利于其在沼泽等栖息地的生存。  相似文献   

18.
磁杆菌HMB—1的磁小体特性及其合成条件的研究   总被引:9,自引:0,他引:9  
从西安段家坡黄土剖面61个土样中,分离纯化出一株磁杆菌HMB1,并对其磁性特点及磁小体的合成条件进行了研究;同时用X射线能谱分析测定了磁小体的组成成分,主要为铁和钴。综合实验结果得出HMB1生长及磁小体形成的最适培养基  相似文献   

19.
概述了磁细菌的特点及由磁细菌所产生的细菌磁颗粒的晶体成分、形态特征、磁颗粒膜的特点以及细菌磁颗粒在信息贮存、磁性细胞制备、基因研究、生物活性物质载体、免疫检测以及在污水处理、矿物分选等方面的应用研究。  相似文献   

20.
Aims: Intracellular magnetosome synthesis in magnetotactic bacteria has been proposed to be a process involving functions of a variety of proteins. To learn more about the genetic control that is involved in magnetosome formation, nonmagnetic mutants are screened and characterized. Methods and Results: Conjugation‐mediated transposon mutagenesis was applied to screen for nonmagnetic mutants of Magnetospirillum magneticum AMB‐1 that were unable to respond to the magnetic field. A mutant strain with disruption of a gene locus encoding nitric oxide reductase was obtained. Growth and magnetosome formation under different conditions were further characterized. Conclusions: Interruption of denitrification by inactivating nitric oxide reductase was responsible for the compromised growth and magnetosome formation in the mutant with shorter intracellular chains of magnetite crystals than those of wild‐type cells under anaerobic conditions. Nevertheless, the mutant displayed apparently normal growth in aerobic culture. Significance and Impact of the Study: Efficient denitrification in the absence of oxygen is not only necessary for maintaining cell growth but may also be required to derive sufficient energy to mediate the formation of magnetosome vesicles necessary for the initiation or activation of magnetite formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号