首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid identification of microorganisms in urine is essential for patients with urinary tract infections (UTIs). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been proposed as a method for the direct identification of urinary pathogens. Our purpose was to compare centrifugation-based MALDI-TOF MS and short-term culture combined with MALDI-TOF MS for the direct identification of pathogens in urine specimens. We collected 965 urine specimens from patients with suspected UTIs, 211/965 isolates were identified as positive by conventional urine culture. Compared with the conventional method, the results of centrifugation-based MALDI-TOF MS were consistent in 159/211 cases (75.4%), of which 135/159 (84.9%) had scores ≥ 2.00; 182/211 cases (86.3%) were detected using short-term culture combined with MALDI-TOF MS, of which 153/182 (84.1%) had scores ≥ 2.00. There were no apparent differences among the three methods (p = 0.135). MALDI-TOF MS appears to accelerate the microbial identification speed in urine and saves at least 24 to 48 hours compared with the routine urine culture. Centrifugation-based MALDI-TOF MS is characterized by faster identification speed; however, it is substantially affected by the number of bacterial colonies. In contrast, short-term culture combined with MALDI-TOF MS has a higher detection rate but a relatively slow identification speed. Combining these characteristics, the two methods may be effective and reliable alternatives to traditional urine culture.  相似文献   

2.
【目的】基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)法基于微生物的特征蛋白指纹图谱鉴定菌种,本研究利用基因组学和MALDI-TOFMS技术鉴定放线菌纲细菌的核糖体蛋白质标志物。【方法】从MALDI-TOF MS图谱数据库选取放线菌纲代表菌种,在基因组数据库检索目标菌种,获取目标菌株或其参比菌株的核糖体蛋白质序列,计算获得分子质量理论值,用于注释目标菌株MALDI-TOFMS指纹图谱中的核糖体蛋白质信号。【结果】从8目,24科,53属,114种,142株放线菌的MALDI-TOFMS图谱中总共注释出31种核糖体蛋白质。各菌株的指纹图谱中核糖体蛋白质信号数量差异显著。各种核糖体蛋白质信号的注释次数差异显著。总共15种核糖体蛋白质在超过半数图谱中得到注释,注释次数最高的是核糖体大亚基蛋白质L36。【结论】本研究找到了放线菌纲细菌MALDI-TOF MS图谱中常见的15种核糖体蛋白质信号,可为通过识别核糖体蛋白质的质谱特征峰鉴定放线菌的方法建立提供依据。  相似文献   

3.

Background

Whole-cell matrix–assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been successfully applied for bacterial identification and typing of many pathogens. The fast and reliable qualities of MALDI-TOF MS make it suitable for clinical diagnostics. MALDI-TOF MS for the identification and cluster analysis of Streptococcus pyogenes, however, has not been reported. The goal of our study was to evaluate this approach for the rapid identification and typing of S. pyogenes.

Methods

65 S. pyogenes isolates were obtained from the hospital. The samples were prepared and MALDI-TOF MS measurements were conducted as previously reported. Identification of unknown spectra was performed via a pattern recognition algorithm with a reference spectra and a dendrogram was constructed using the statistical toolbox in Matlab 7.1 integrated in the MALDI Biotyper 2.0 software.

Results

For identification, 61 of 65 S. pyogenes isolates could be identified correctly by MALDI-TOF MS with BioType 2.0 when compared to biochemical identification (API Strep), with an accuracy of 93.85%. In clustering analysis, 44 of 65 isolates were in accordance with those established by M typing, with a matching rate of 67.69%. When only the M type prevalence in China was considered, 41 of 45 isolates were in agreement with M typing, with a matching rate of 91.1%.

Conclusions

It was here shown that MALDI-TOF MS with Soft Biotype 2.0 and its database could facilitate rapid identification of S. pyogenes. It may present an attractive alternative to traditional biochemical methods of identification. However, for classification, more isolates and advances in the MALDI-TOF MS technology are needed to improve accuracy.  相似文献   

4.
This investigation aimed to assess whether MALDI-TOF MS analysis of the proteome could be applied to the study of Trichoderma, a fungal genus selected because it includes many species and is phylogenetically well defined. We also investigated whether MALDI-TOF MS analysis of peptide mass fingerprints would reveal apomorphies that could be useful in diagnosing species in this genus. One hundred and twenty nine morphologically and genetically well-characterized strains of Hypocrea and Trichoderma, belonging to 25 species in 8 phylogenetic clades, were analyzed by MALDI-TOF MS mass spectrometry. The resulting peak lists of individual samples were submitted to single-linkage cluster analysis to produce a taxonomic tree and were compared to ITS and tef1 sequences from GenBank. SuperSpectra™ for the 13 most relevant species of Trichoderma were computed. The results confirmed roughly previously defined clades and sections. With the exceptions of T. saturnisporum (Longibrachiatum Clade) and T. harzianum (Harzianum Clade), strains of individual species clustered very closely. T. polysporum clustered distantly from all other groups. The MALDI-TOF MS analysis accurately reflected the phylogenetic classification reported in recent publications, and, in most cases, strains identified by DNA sequence analysis clustered together by MALDI-TOF MS. The resolution of MALDI-TOF MS, as performed here, was roughly equivalent to ITS rDNA. The MALDI-TOF MS technique analyzes peptides and represents a rough equivalent to sequencing, making this method a useful adjunct for determination of species limits. It also allows simple, reliable, and quick species identification, thus representing a valid alternative to gene sequencing for species diagnosis of Trichoderma and other fungal taxa.  相似文献   

5.
Wine proteins play an important role in the quality of wine, because they affect taste, clarity and stability of product. The majority of wine proteins are in the range of 20–30 kDa. Different mass spectrometry (MS) techniques have been successfully applied to study the grape and wine proteins. By liquid chromatography (LC) electrospray ionization (ESI) MS and nano-LC/MS, nine dipeptides and 80 peptides were unambiguously identified in Champagne and Sauvignon Blanc wines, respectively. Using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) and surface-enhanced laser desorption/ionization TOF, the protein and peptide fingerprints in Chardonnay, Sauvignon Blanc and Muscat of Alexandria wines were determined. MALDI-TOF identified the mesocarp proteome of six Vitis grape varieties. Proteins in different grape tissue extracts were also studied. The major grape pathogenic-related proteins are chitinases and thaumatin-like proteins, which both persist through the vinification process and cause hazes and sediments in bottled wines. ESI-MS, LC/ESI-MS and MALDI-TOF analysis of these proteins in grape and wine were also used to characterize different grape varieties.  相似文献   

6.
The Campylobacter species strains (n = 42; isolated from clinical samples and deposited in Czech National Collection of Type Cultures, Prague) originally phenotypically (and biochemically) identified as Campylobacter jejuni were re-classified using molecular biological and mass spectrometric methods. Whole-cell MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) separated the isolates into two genetically related strains — C. jejuni (n = 26) and C. coli (n = 16) and, moreover, distinguished the intimate details in the group of tested strains. It also made it possible to create the MALDI-TOF MS dendrogram; similarly, the spectral characteristics were used for the 3D cluster analysis. Polymerase chain reaction (PCR) confirmed the results obtained by mass spectrometry. Both methods (PCR and MALDI-TOF MS) gave the same results which supports their suitability in the rapid and accurate Campylobacter-species determination. Part of this work was presented at the 24th Congress of Czechoslovak Society for Microbiology, Liberec (Czech Republic) 2007.  相似文献   

7.
The Streptococcus bovis/equinus complex is a heterogeneous group within the group D streptococci with important clinical relevance regarding infective endocarditis, sepsis and colon carcinoma. The taxonomic identification of species and sub-species of this complex, by the standard methods remains difficult.In the present study, we compared the cluster analysis of 88 strains of species of the S. bovis/equinus complex by sequence analysis of the manganese-dependent superoxide dismutase gene (sodA) and by Matrix Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry (MALDI-TOF MS). We observed a high congruence of strain grouping by MALDI-TOF MS in comparison with sodA sequence analyses, demonstrating the accuracy and reliability of MALDI-TOF MS in comparison to DNA sequence-based method.By generating mass spectra for each species and sub-species, we were able to discriminate all members of the S. bovis/equinus complex. Furthermore, we demonstrated reliable identifications to the species level by MALDI-TOF MS, independently of cultivation conditions.  相似文献   

8.
Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures.  相似文献   

9.
Sieve tubes mediate the long-distance transport of nutrients and signals between source and sink organs of plants. To detect mobile phloem proteins that are differentially distributed in source and sink organs of Cucurbita maxima, we used both one-dimensional gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Both techniques revealed that phloem protein patterns depend on the sampling site: whilst several proteins were consistently observed in all phloem samples studied others appeared to occur in a organ-specific manner. For a characterization and identification of distinct phloem polypeptides, two approaches were chosen. First, protein bands resolved by SDS-PAGE were eluted from the polyacrylamide gel and the masses of the proteins were then determined by MALDI-TOF MS. Second, proteins resolved by SDS-PAGE were subjected to proteolytic degradation and the resulting peptides were analyzed by MALDI-TOF MS; the masses of the proteolytic peptides were used for a database search. By the latter approach, three mobile phloem compounds were identified as the phloem-specific protein PP2 (D.E. Bostwick et al., 1992, The Plant Cell 4, 1539–1548) a chymotrypsin and an aspartic proteinase inhibitor. None of the other polypeptides studied corresponded to any of the protein sequences present in the database. Furthermore, MALDI-TOF MS analyses indicated that some of the mobile phloem proteins occur in a covalently modified form and that the extent of the modification depends upon the plant organ. Received: 25 July 1998 / Accepted: 22 September 1998  相似文献   

10.
There was inconsistent evidence regarding the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for microorganism identification with/without antibiotic stewardship team (AST) and the clinical outcome of patients with bloodstream infections (BSI). In a systematic review and meta-analysis, we evaluated the effectiveness of rapid microbial identification by MALDI-TOF MS with and without AST on clinical outcomes. We searched PubMed and EMBASE databases from inception to 1 February 2022 to identify pre–post and parallel comparative studies that evaluated the use of MALDI-TOF MS for microorganism identification. Pooled effect estimates were derived using the random-effects model. Twenty-one studies with 14,515 patients were meta-analysed. Compared with conventional phenotypic methods, MALDI-TOF MS was associated with a 23% reduction in mortality (RR = 0.77; 95% CI: 0.66; 0.90; I2 = 35.9%; 13 studies); 5.07-h reduction in time to effective antibiotic therapy (95% CI: −5.83; −4.31; I2 = 95.7%); 22.86-h reduction in time to identify microorganisms (95% CI: −23.99; −21.74; I2 = 91.6%); 0.73-day reduction in hospital stay (95% CI: −1.30; −0.16; I2 = 53.1%); and US$4140 saving in direct hospitalization cost (95% CI: $-8166.75; $-113.60; I2 = 66.1%). No significant heterogeneity sources were found, and no statistical evidence for publication bias was found. Rapid pathogen identification by MALDI-TOF MS with or without AST was associated with reduced mortality and improved outcomes of BSI, and may be cost-effective among patients with BSI.  相似文献   

11.
Quality control and assurance of glycan profiles of a recombinant glycoprotein from lot to lot is a critical issue in the pharmaceutical industry. To develop an easy and simple quantitative and qualitative glycan profile method based on matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), the modification with Girard’s reagent T (GT) was exploited. Because GT-derivatized quantification of oligosaccharides using MALDI-TOF MS is possible only with neutral glycans, sialylated glycans are not subjected to quantitative analysis with MALDI-TOF MS. To solve this problem, mild methyl esterification and subsequent GT derivatization were employed, enabling us to perform rapid qualitative and quantitative analysis of sialylated and neutral N-linked oligosaccharides using MALDI-TOF MS. This modified method was used in the comparative quantification of N-glycans from the recombinant therapeutic glycoprotein expressed in two different Chinese hamster ovary (CHO) cell lines. The percentages of sialylated N-glycans to total were 22.5 and 5.2% in CHO-I and CHO-II cells, respectively, resulting in a significant difference in the biological activity of the recombinant glycoprotein.  相似文献   

12.
Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has been widely adopted as a useful technology in the identification and typing of microorganisms. This study employed the whole-cell MALDI-TOF MS to identify and differentiate wild-type and mutants containing constructed single gene mutations of Burkholderia pseudomallei, a pathogenic bacterium causing melioidosis disease in both humans and animals. Candidate biomarkers for the B. pseudomallei mutants, including rpoS, ppk, and bpsI isolates, were determined. Taxon-specific and clinical isolate-specific biomarkers of B. pseudomallei were consistently found and conserved across all average mass spectra. Cluster analysis of MALDI spectra of all isolates exhibited separate distribution. A total of twelve potential mass peaks discriminating between wild-type and mutant isolates were identified using ClinProTools analysis. Two peaks (m/z 2721 and 2748 Da) were specific for the rpoS isolate, three (m/z 3150, 3378, and 7994 Da) for ppk, and seven (m/z 3420, 3520, 3587, 3688, 4623, 4708, and 5450 Da) for bpsI. Our findings demonstrated that the rapid, accurate, and reproducible mass profiling technology could have new implications in laboratory-based rapid differentiation of extensive libraries of genetically altered bacteria.  相似文献   

13.

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based microbial identification is a popular analytical method. Strain Solution proteotyping software available for MALDI-TOF MS has great potential for the precise and detailed discrimination of microorganisms at serotype- or strain-level, beyond the conventional mass fingerprinting approaches. Here, we constructed a theoretically calculated mass database of Salmonella enterica subspecies enterica consisting of 12 biomarker proteins: ribosomal proteins S8, L15, L17, L21, L25, and S7, Mn-cofactor-containing superoxide dismutase (SodA), peptidyl-prolyl cis-trans isomerase C (PPIase C), and protein Gns, and uncharacterized proteins YibT, YaiA, and YciF, that can allow serotyping of Salmonella. Strain Solution ver. 2 software with the novel database constructed in this study demonstrated that 109 strains (94%), including the major outbreak-associated serotypes, Enteritidis, Typhimurium, and Infantis, could be correctly identified from others by colony-directed MALDI-TOF MS using 116 strains belonging to 23 kinds of typed and untyped serotypes of S. enterica from culture collections, patients, and foods. We conclude that Strain Solution ver. 2 software integrated with the accurate mass database will be useful for the bacterial proteotyping by MALDI-TOF MS-based microbial classification in the clinical and food safety fields.

  相似文献   

14.
Although classical proteomic approaches are still used regularly in routine clinical diagnostic procedures, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) MS has recently moved into diagnostic microbiology laboratories. MALDI-TOF MS is currently replacing phenotypic microbial identification. Many laboratories now use MALDI-TOF MS for its high efficiency, both from a diagnostic and a cost-per-analysis point of view. The US FDA has now cleared two of the commercially available systems for in vitro diagnostics. This will further spark development of MS applications in antimicrobial susceptibility testing and epidemiology. This review summarizes the state of affairs of MALDI-TOF MS in clinical microbiology; however, this is an active field of research subject to rapid evolution. We emphasize assessment of the clinical relevance and studies focusing on data obtained through comparative analyses of different MALDI-TOF MS instrumentation and multicenter validation studies. The future of MALDI-TOF MS, including antimicrobial susceptibility testing and epidemiological typing, is also highlighted.  相似文献   

15.
Detection of Staphylococcus enterotoxin B (SEB) by biomolecular interaction analysis mass spectrometry (BIA/MS) is presented in this work. The BIA/MS experiments were based on a surface plasmon resonance (SPR) MS immunoassay that detects affinity-captured SEB both via SPR and by means of exact and direct mass measurement by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Experiments were performed with standard samples and food samples to assess the BIA/MS limit of detection for SEB and to set the experimental parameters for proper quantitation. Single and double SPR referencing was performed to accurately estimate the amount of the bound toxin. Reproducible detection of 1 ng of SEB per ml, corresponding to affinity capture and MS analysis of ~500 amol of SEB, was readily achieved from both the standard and mushroom samples. A certain amount of SEB degradation was indicated by the signals in the mass spectra. The combination of MS with SPR-based methods of detection creates a unique approach capable of quantifying and qualitatively analyzing protein toxins from pathogenic organisms.  相似文献   

16.

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) is widely used in clinical laboratories for routine identification of bacteria and yeasts. However, methodological difficulties are still apparent when applied to filamentous fungi. The liquid cultivation method recommended by Bruker Daltonics GmbH for identification of filamentous fungi by MALDI-TOF MS is labour intensive and time-consuming. In this study, growth of Aspergillus species on different (porous) surfaces was investigated with the aim to develop a more reliable, quicker and less laborious identification method using MALDI-TOF MS. Mycelial growth without sporulation mimicking liquid cultivation and reliable MALDI-TOF MS spectra were obtained when A. fumigatus strains were grown on and in between a polycarbonate membrane filter on Sabouraud dextrose agar. A database of in-house reference spectra was created by growing Aspergillus reference strains (mainly focusing on sections Fumigati and Flavi) under these selected conditions. A test set of 50 molecularly identified strains grown under different conditions was used to select the best growth condition for identification and to perform an initial validation of the in-house database. Based on these results, the cultivation method on top of a polycarbonate filter proved to be most successful for species identification. This method was therefore selected for the identification of two sets of clinical isolates that mainly consisted of Aspergilli (100 strains originating from Indonesia, 70 isolates from Qatar). The results showed that this cultivation method is reliable for identification of clinically relevant Aspergillus species, with 67% and 76% correct identification of strains from Indonesia and Qatar, respectively. In conclusion, cultivation of Aspergilli on top of a polycarbonate filter showed improved results compared to the liquid cultivation protocol recommended by Bruker in terms of percentage of correct identification, ease of MSP creation, time consumption, cost and labour intensity. This method can be reliably applied for identification of clinically important Aspergilli and has potential for identification of other filamentous fungi.

  相似文献   

17.
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has been presented as a superior method for the detection of microorganisms in body fluid samples (e.g., blood, saliva, pus, etc.) However, the performance of MALDI-TOF MS in routine identification of caries-related Lactobacillus isolates from saliva of adult patients with caries has not been determined. In the present study, we introduced a new MALDI-TOF MS system for identification of lactobacilli. Saliva samples were collected from 120 subjects with caries. Bacteria were isolated and cultured, and each isolate was identified by both 16S rRNA sequencing and MALDI-TOF MS. The identification results obtained by MALDI-TOF MS were concordant at the genus level with those of conventional 16S rRNA-based sequencing for 88.6% of lactobacilli (62/70) and 95.5% of non-lactobacilli (21/22). Up to 96 results could be obtained in parallel on a single MALDI target, suggesting that this is a reliable high-throughput approach for routine identification of lactobacilli. However, additional reference strains are necessary to increase the sensitivity and specificity of species-level identification.  相似文献   

18.
Bacillus amyloliquefaciens strain LP03 isolated from soil, produced an antagonistic compound that strongly inhibited the growth of plant-pathogenic fungi and a lipopeptide biosurfactant. Also, isolated strain LP03 had a marked crude oil-emulsifying activity as it developed a clear zone around the colony after incubation for 24 h at 37°C. LP03 was identified as Bacillus amyloliquefaciens by analysis of partial 16 S rRNA gene and partial gyrA gene sequence. The lipopeptide was purified by acid precipitation of cell-free culture broth, extraction of the precipitates with methanol, silica gel column chromatography, and reverse-phase, high-pressure liquid chromatography. The purified biosurfactant was analyzed biochemical structure by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) and electrospray ionization mass spectrometry/mass spectrometry (ESI-MS/MS). The masses of the two peaks were observed by HPLC chromatography. Their masses were determined to be 1,044 and 1,058 m/z with MALDI-TOF mass spectrometry. As constituents of the peptide and lipophilic part of the m/z 1,022.6, seven amino acids (Glu-Leu-Met-Leu-Pro-Leu-Leu) and β-hydroxy-C13 fatty acid were determined by ESI-MS/MS. The lipopeptide of 1,022.6 Da differed from surfactins in the substitution of leucine, valine and aspartic acid in positions 3, 4, and 5 by methionine, leucine, and proline, respectively. Novel lipopeptide was designated as bamylocin A.  相似文献   

19.
Neuropeptides in neurosecretory cells of the pars intercerebralis (PI) and pars lateralis (PL) in the brain, and those in the corpus cardiacum–hypocerebral ganglion complex (CC-HG) and corpus allatum (CA) were examined by mass spectrometry and immunocytochemistry in adult females of the blowfly, Protophormia terraenovae. By using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and electrospray ionization quadrupole orthogonal acceleration time-of-flight mass spectrometry (ESI-Q-Tof MS) and MS/MS, 4 peptides (including myosuppressin and SIFamide) were detected in the PI, 12 peptides (including [Arg7]-corazonin and [Arg7]-corazonin311) in the PL, 13 peptides (including myosuppressin, [Arg7]-corazonin and [Arg7]-corazonin3–11) in the CC-HG, and 6 peptides in the CA. MALDI-TOF MS analysis of each tissue or organ was made in about 20 flies under diapause-inducing (LD 12:12 at 20 °C) and diapause-averting conditions (LD 18:6 at 25 °C). These molecular ion peaks did not distinctively differ between diapause-inducing and diapause-averting conditions. A peptide with an m/z value at 1395.1 was purified from 240 brains and the 2nd–10th amino acids were sequenced as –YRKPPFNGS–, corresponding to a partial sequence of SIFamide. Only two pairs of somata in the PI were immunoreactive to antisera against SIFamide, which were local neurons widely extending fibers throughout the brain neuropils.  相似文献   

20.
Summary. Pseudomonas sp. strain phDV1, being a phenol degrading bacterium, has been found to utilize phenol as sole carbon source via the meta pathway. Blue native polyacrylamide gel electrophoresis (BN-PAGE) is widely used for the analysis of oligomeric state and molecular mass non-dissociated protein complexes. In this study, a number of proteomic techniques were used to investigate the oligomeric state enzymes involved in the aromatic degradation pathway. In particular, the Pseudomonas sp. strain phDV1 proteome was monitored under two different growth substrate conditions, using glucose or phenol as sole carbon source. The protein complexes map was compared by BN-PAGE after fractionation by sucrose density centrifugation of the cell extracts. Multiple differences were detected. Further, analysis and identification of the subunit composition of these complexes was carried out using MALDI-TOF MS, allowing the identification of 49 proteins. Additionally, functional information regarding protein–protein interactions was assembled, by coupling 2-D BN-PAGE with MALDI-TOF MS. Application of this functional proteomics method resulted in an higher number of the identified proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号