首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Putative glyceraldehyde-3-phosphate dehydrogenase (gapdh) genes were cloned from Pilobolus crystallinus with degenerated primers designed from conserved sequences in many GAPDHs. P. crystallinus had three gapdh homologue genes, named pcgapdh1, pcgapdh2, and pcgapdh3. Deduced amino acid sequences for PCGAPDH1, PCGAPDH2, and PCGAPDH3 showed highest similarity with GPD3, GPD1, and GPD2, respectively, of Mucor circinelloides, indicating that these three gapdh genes had diverged before Pilobolus and Mucor were separated. The expression patterns of the gapdh genes, however, were quite different between P. crystallinus and M. circinelloides. All the three pcgapdh genes were expressed, and the expression of pcgapdh2 was suppressed by glucose and sodium acetate. These results indicate that the function of these orthologous genes was changed after Pilobolus and Mucor were separated.  相似文献   

3.
The alginate lyase-coding genes of Vibrio halioticoli IAM 14596T, which was isolated from the gut of the abalone Haliotis discus hannai, were cloned using plasmid vector pUC 18, and expressed in Escherichia coli. Three alginate lyase-positive clones, pVHB, pVHC, and pVHE, were obtained, and all clones expressed the enzyme activity specific for polyguluronate. Three genes, alyVG1, alyVG2, and alyVG3, encoding polyguluronate lyase were sequenced: alyVG1 from pVHB was composed of a 1056-bp open reading frame (ORF) encoding 352 amino acid residues; alyVG2 gene from pVHC was composed of a 993-bp ORF encoding 331 amino acid residues; and alyVG3 gene from pVHE was composed of a 705-bp ORF encoding 235 amino acid residues. Comparison of nucleotide and deduced amino acid sequences among AlyVG1, AlyVG2, and AlyVG3 revealed low homologies. The identity value between AlyVG1 and AlyVG2 was 18.7%, and that between AlyVG2 and AlyVG3 was 17.0%. A higher identity value (26.0%) was observed between AlyVG1 and AlyVG3. Sequence comparison among known polyguluronate lyases including AlyVG1, AlyVG2, and AlyVG3 also did not reveal an identical region in these sequences. However, AlyVG1 showed the highest identity value (36.2%) and the highest similarity (73.3%) to AlyA from Klebsiella pneumoniae. A consensus region comprising nine amino acid (YFKAGXYXQ) in the carboxy-terminal region previously reported by Mallisard and colleagues was observed only in AlyVG1 and AlyVG2. Received May 7, 1999; accepted September 4, 1999.  相似文献   

4.
Strains of the rumen cellulolytic bacterium Ruminococcus flavefaciens vary in their ability to utilise isolated plant xylans for growth. Here an 11.5 kb fragment of genomic DNA from the xylan-utilizing R. flavefaciens strain 17 that contains the xynD gene, which encodes an extracellular xylanase/β -(1,3-1,4)-glucanase, was analysed. Sequencing revealed five consecutive open reading frames downstream from xynD on the same strand, preceded by the divergently transcribed ORF3. These include the following genes likely to be involved in utilisation of xylan breakdown products: xylA, encoding a β -(1,4)-xylosidase, xsi, encoding a xylose isomerase and ORF8 encoding part of an ABC-type sugar transporter. The products of ORF3 and of a partial ORF1 found upstream of xynD, show significant sequence similarity to AraC-type regulatory proteins while ORF4 and ORF7 show no close relationship to other known proteins. Homologues of the xylA and xsi genes, and inducible β -xylosidase activity, were readily detectable in three xylan-utilizing R. flavefaciens strains 17, B1a and C94 but not in two xylan non-utilizing strains, C1a and B34b, suggesting that this cluster may be absent from xylan non-utilizing strains.  相似文献   

5.
A DNA fragment from Microbacterium liquefaciens AJ 3912, containing the genes responsible for the conversion of 5-substituted-hydantoins to α-amino acids, was cloned in Escherichia coli and sequenced. Seven open reading frames (hyuP, hyuA, hyuH, hyuC, ORF1, ORF2, and ORF3) were identified on the 7.5 kb fragment. The deduced amino acid sequence encoded by the hyuA gene included the N-terminal amino acid sequence of the hydantoin racemase from M. liquefaciens AJ 3912. The hyuA, hyuH, and hyuC genes were heterologously expressed in E. coli; their presence corresponded with the detection of hydantoin racemase, hydantoinase, and N-carbamoyl α-amino acid amido hydrolase enzymatic activities respectively. The deduced amino acid sequences of hyuP were similar to those of the allantoin (5-ureido-hydantoin) permease from Saccharomyces cerevisiae, suggesting that hyuP protein might function as a hydantoin transporter.  相似文献   

6.
7.
Two new crystal protein genes, cry24B and s1orf2, were cloned from a mosquitocidal Bacillus thuringiensis serovar sotto strain. The cry24B and s1orf2 genes encoded a 76-kDa and 62-kDa protein, respectively. The Cry24B protein retained five conserved regions commonly found in the existing Cry proteins. The amino acid sequence of the S1ORF2 had a high homology to that of the ORF2 protein of B. thuringiensis serovar jegathesan. Southern hybridization experiments with a cry24B gene-specific probe revealed that these genes are located on two large plasmids of > 100 kb. When the two genes, cry24B and s1orf2, were expressed in an acrystalliferous B. thuringiensis host, the proteins were synthesized and accumulated as inclusions. These inclusions exhibited no larvicidal activities against three mosquito species: Aedes aegypti, Anopheles stephensi, and Culex pipiens molestus. Likewise, the inclusions contained no cytocidal activity against HeLa cells.  相似文献   

8.
9.
The actI gene, encoding a component of the actinorhodin polyketide synthase of Streptomyces coelicolor, was used to identify and clone a homologous 11.7 kb BamHI DNA fragment from Saccharopolyspora hirsuta 367. The cloned fragment complemented actinorhodin production in a strain of Streptomyces coelicolor bearing a mutant actI gene. The DNA sequence of a 5.1 kb fragment revealed 6 open reading frames (ORF). ORF1 does not resemble any known DNA or deduced protein sequence, while the deduced protein sequence of ORF2 resembles that of biotin carboxyl carrier proteins. Based on the similarity to deduced protein sequences from cloned genes of polyketide producers, ORF3 would code for a ketoreductase, ORF4 and ORF5 for the putative heterodimeric -ketoacyl synthase, and ORF6 for an acyl carrier protein.  相似文献   

10.
11.
MIC molecules are stress-inducible ligands of the activating receptor NKG2D, which is expressed on natural killer cells and subsets of T lymphocytes. In rhesus macaques (Macaca mulatta), three different MIC sequences (MIC1, MIC2, MIC3) have been described that are closely related to but, according to phylogenetic analysis, do not represent orthologues of the human MICA and MICB genes. Although a single haplotype of the rhesus macaque Mhc (Mamu) has been completely sequenced, it remained unknown so far whether these three sequences are derived from two or three Mamu-MIC genes. We genotyped a cohort of 115 rhesus macaque individuals for the presence of MIC1, MIC2, and MIC3 sequences and analysed the segregation in families. All individuals were positive for MIC2, whereas only 66.1 and 80.9 % were positive for MIC1 and MIC3, respectively. MIC1 and MIC3 sequences segregated in offspring, indicating that they behave as alleles. Thus, we conclude that two MIC genes are present in the rhesus macaque Mhc, which we propose to designate as Mamu-MICA (MIC1 and MIC3) and Mamu-MICB (MIC2). “MIC1” and “MIC3” are regarded as divergent allelic lineages of the Mamu-MICA gene. Mamu-MIC genotyping of DNA of a cohort of 68 experimentally simian immunodeficiency virus (SIV)-infected rhesus macaques revealed no significant association of either of the two Mamu-MICA allelic lineages with differences in progression to AIDS-like symptoms. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorize users. Anne Averdam and Sandra Seelke contributed equally.  相似文献   

12.
The organization of the three major histocompatibility complex (Mhc)-linked heat shock protein 70 (Hsp70) genesHsp70-1, Hsp70-2, andHsp70-3, and the nucleotide sequences of these genes, are presented for the rat.Hsp70-1 andHsp70-2 gene products are identical at the amino acid level. From the pattern of sequence similarity of the orthologous Mhc-linkedHsp70 genes of rat, human, and mouse, it is concluded that the gene duplications leading to the three-gene cluster occurred before the separation of the primate and rodent lines and that theHsp70-1 andHsp70-2 genes of rat and human might have undergone homogenization of their sequences.  相似文献   

13.
14.
Three novel low-molecular-weight glutenin subunit (LMW-GS) genes (designated as Ht1, Ht2, and Ht3) were isolated from the genomic DNA of Hordeum brevisubulatum ssp. turkestanicum by PCR amplification (accession no. Y0695). The coding regions of Ht1, Ht2, and Ht3 were 924, 924, and 903 bp, respectively. The deduced amino acid sequences were 306, 306, and 299 amino acid residues each with a signal peptide, a central repetitive region rich in proline and glutamine, and N-and C-terminal non-repetitive domains. A comparison was carried out of these genes with other known B hordein genes from cultivated barley and LMW glutenin genes from wheat. The results indicated that Ht1, Ht2, and Ht3 had a more similar structure and a higher level of homology with the LMW-GS genes than the B hordein genes. In order to investigate the evolutionary relationship of the novel genes with the prolamin genes from barley and wheat, the phylogenetic tree was constructed and the subfamilies of these prolamin genes were identified. The results suggested that the three novel genes were glutenin-like proteins designated as LMW-m type genes. The text was submitted by the authors in English.  相似文献   

15.
Glycerol-3-phosphate dehydrogenase (GPDH) catalyzes the conversion of dihydroxyacetone phosphate (DHAP) and NADH to glycerol-3-phosphate (G3P) and NAD+. G3P is important as a precursor for glycerol and glycerolipid synthesis in microalgae. A GPDH enzyme has been previously purified from the green microalga Chlamydomonas reinhardtii, however, no genes coding for GPDH have been characterized before. In this study, we report the in silico characterization of three putative GPDH genes from C. reinhardtii: CrGPDH1, CrGPDH2, and CrGPDH3. These sequences showed a significant similarity to characterized GPDH genes from the microalgae Dunaliella salina and Dunaliella viridis. The prediction of the three-dimensional structure of the proteins showed the characteristic fold topology of GPDH enzymes. Furthermore, the phylogenetic analysis showed that the three CrGPDHs share the same clade with characterized GPDHs from Dunaliella suggesting a common evolutionary origin and a similar catalytic function. In addition, the K a/K s ratios of these sequences suggested that they are under purifying selection. Moreover, the expression analysis showed a constitutive expression of CrGPDH1, while CrGPDH2 and CrGPDH3 were induced in response to osmotic stress, suggesting a possible role for these two sequences in the synthesis of glycerol as a compatible solute in osmoregulation, and perhaps also in lipid synthesis in C. reinhardtii. This study has provided a foundation for further biochemical and genetic studies of the GPDH family in this model microalga, and also opportunities to assess the potential of these genes to enhance the synthesis of TAGs for biodiesel production.  相似文献   

16.
To elucidate the evolution of the complement system and MHC class III region, we analyzed the complement factor B (Bf) genes of a urochordate ascidian, Ciona intestinalis. Three different cDNA species, termed CiBf-1, CiBf-2 and CiBf-3, were identified. The deduced amino-acid sequences all contained the usual domains of vertebrate Bf and, in addition, three extra domains at the N-terminus. Furthermore, the serine protease domain of these CiBfs shared unique features with vertebrate complement components C1r/s and mannose-binding lectin-associated serine protease (MASP)-2/3, the absence of the disulfide bond designated histidine loop, and the usage of the AGY codon for the catalytic serine residue. These results indicate that complement genes have evolved through extensive exon shuffling events in the early stage of chordate evolution. Overall deduced amino-acid identity between CiBf-1 and -2 was 88%, whereas CiBf-3 showed 49% identity to both CiBf-1 and CiBf-2. These three CiBf genes were located within an approximately 50-kb genomic region, and exons 3 and 5 of all the three Bf genes showed an extremely high degree of nucleotide identity, indicating that the CiBf genes experienced extensive reorganization, such as duplication and gene conversion, since its divergence from the vertebrate Bf/C2 gene. Fluorescent in situ hybridization (FISH) to the chromosomes showed that genetic loci for the CiBfs, CiC3-1 and CiC3-2 genes are present on three different chromosomes, suggesting the possibility that the linkage among the MHC class III complement genes was established in the vertebrate lineage after its divergence from urochordates.The sequences reported in this paper have been deposited in the DDBJ database (accession nos. AB180044–AB180051).  相似文献   

17.
The methionine chain-elongation pathway is required for aliphatic glucosinolate biosynthesis in plants and evolved from leucine biosynthesis. In Arabidopsis thaliana, three 3-isopropylmalate dehydrogenases (AtIPMDHs) play key roles in methionine chain-elongation for the synthesis of aliphatic glucosinolates (e.g. AtIPMDH1) and leucine (e.g. AtIPMDH2 and AtIPMDH3). Here we elucidate the molecular basis underlying the metabolic specialization of these enzymes. The 2.25 Å resolution crystal structure of AtIPMDH2 was solved to provide the first detailed molecular architecture of a plant IPMDH. Modeling of 3-isopropylmalate binding in the AtIPMDH2 active site and sequence comparisons of prokaryotic and eukaryotic IPMDH suggest that substitution of one active site residue may lead to altered substrate specificity and metabolic function. Site-directed mutagenesis of Phe-137 to a leucine in AtIPMDH1 (AtIPMDH1-F137L) reduced activity toward 3-(2′-methylthio)ethylmalate by 200-fold, but enhanced catalytic efficiency with 3-isopropylmalate to levels observed with AtIPMDH2 and AtIPMDH3. Conversely, the AtIPMDH2-L134F and AtIPMDH3-L133F mutants enhanced catalytic efficiency with 3-(2′-methylthio)ethylmalate ∼100-fold and reduced activity for 3-isopropylmalate. Furthermore, the altered in vivo glucosinolate profile of an Arabidopsis ipmdh1 T-DNA knock-out mutant could be restored to wild-type levels by constructs expressing AtIPMDH1, AtIPMDH2-L134F, or AtIPMDH3-L133F, but not by AtIPMDH1-F137L. These results indicate that a single amino acid substitution results in functional divergence of IPMDH in planta to affect substrate specificity and contributes to the evolution of specialized glucosinolate biosynthesis from the ancestral leucine pathway.  相似文献   

18.
19.
To clarify the role of the heterocyst-specific [2Fe-2S] ferredoxin in cyanobacterial nitrogen fixation, mutational analysis of the Anabaena 7120 fdxH gene region was carried out. First, the DNA sequence of the wild-type 3509-bp EcoRI fragment downstream of the fdxH gene was determined. Genes homologous to ORF3 from the fdxH gene regions of A. variabilis and Plectonemaboryanum, the mop genes of Clostridiumpasteurianum encoding molybdo-pterin binding proteins, and ORF3 from the A. variabilis hydrogenase gene cluster were identified within the sequenced region. For mutational analysis the Anabaena 7120 mutant strains LAK4, BMB92, and KSH10 were constructed. In LAK4 the fdxH coding region is disrupted by an interposon, whereas BMB92 is deleted for a 2799-bp NheI fragment encompassing fdxH, ORF3, mop, ORF4, and ORF5. Mutant strain KSH10 is a derivative of BMB92, complemented for fdxH but not for the other genes located further downstream. Analysis of the Nif phenotype of these mutant strains showed that FdxH is necessary for maximum nitrogenase activity and optimal growth under nitrogen-fixing conditions, but not absolutely essential for diazotrophic growth. The role of alternative electron donors for nitrogenase, which might substitute for FdxH, is discussed. Iron concentrations (1μM Fe) sufficient to induce synthesis of the vegetative cell flavodoxin did not stimulate diazotrophic growth of the fdxH mutant strains, suggesting that FdxH was not replaced by a NifJ-flavodoxin system. Comparison of LAK4 and BMB92 indicated that one of the genes located downstream of fdxH might also play a (minor) role in nitrogen fixation. Received: 28 May 1996 / Accepted: 4 October 1996  相似文献   

20.
Low-molecular-weight glutenin subunits (LMW-GS) have great effect on wheat processing quality, but were numerous and difficult to dissect by SDS-PAGE. The development of functional markers may be the most effective way for a clear discrimination of different LMW-GS genes. In the present study, three different approaches were used to identify SNPs of different genes at Glu-D3 and Glu-B3 loci in bread wheat for the development of six STS markers (3 for Glu-D3 and 3 for Glu-B3 genes) that were validated with distinguished wheat cultivars. Firstly, seven LMW-GS gene sequences ( AY585350, AY585354, AY585355, AY585356, AY585349, AY585351 and AY585353 ) from Aegilops tauschii, the diploid donor of the D-genome of bread wheat, were chosen to design seven pairs of AS-PCR primers for Glu-D3 genes. By amplifying the corresponding genes from five bread wheat cultivars with different Glu-D3 alleles (a, b, c, d and e) and Ae. tauschii, a primer set, S13F2/S13R1, specific to the gene AY585356, was found to be positive to cultivars with alleles Glu-D3c and d. Nevertheless, the other five pairs of primers designed from AY585350, AY585349, AY585353, AY585354 and AY585355, respectively, did not produce specific PCR products to the cultivars tested. Secondly, all the PCR products from the five primer sets without specific characteristics were sequenced and an SNP from the gene AY585350 was detected in the cultivar Hartog, which resulted in the second STS marker S1F1/S1R3 specific to the allelic variant of AY585350. Thirdly, three Glu-D3 sequences (AB062851, AB062865 and AB062872) and three Glu-B3 sequences (AB062852, AB062853 and AB062860) defined by Ikeda et al. (2002) were chosen to query wheat EST and NR databases, and DNA markers were developed based on the putative SNPs among the sequences. Using this approach, four STS markers were developed and validated with 16-19 bread wheat cultivars. The primer set T1F4/T1R1 was also a Glu-D3 gene-specific marker for AB062872, while T2F2/T2R2, T5F3/T5R1 and T13F4/T13R3 were all Glu-B3 gene specific markers for AB062852, BF293671 and AY831800, respectively. The chromosomal locations of the six markers were verified by amplifying the genomic DNA of Ae. tauschii (DD), T. monococcum (AA) and T. turgidum (AABB) entries, as well as Chinese Spring and its group 1 chromosome nulli-tetrasomic lines. The results are useful to discriminate the corresponding Glu-D3 and Glu-B3 genes in wheat breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号