首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus stearothermophilus CGTase had a wider acceptor specificity than Bacillus macerans CGTase did and produced large amounts of transfer products of various acceptors such as D-galactose, D-mannose, D-fructose, D- and L-arabinose, d- and L-fucose, L-rhamnose, D-glucosamine, and lactose, which were inefficient acceptors for B. macerans CGTase. The main component of the smallest transfer products of lactose was assumed to be α-D-glucosyl O-β-D-galactosyl-(l→4)-β-D-glucoside.  相似文献   

2.
Depsipeptides are peptide-like polymers consisting of amino acids and hydroxy acids, and are expected to be new functional materials for drug-delivery systems and polymer science. In our previous study, D-alanyl-D-lactate, a type of depsipeptide, was enzymatically synthesized using D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 (TmDdl) by Y207F substitution. Thereafter, in this study, further mutagenesis was introduced, based on structural comparison between TmDdl and a well-characterized D-alanine-D-alanine ligase from Escherichia coli. The S137A/Y207F mutant showed higher D-alanyl-D-lactate and lower D-alanyl-D-alanine synthesizing activity than the Y207F mutant. This suggests that substitution at the S137 residue contributes to product selectivity. Saturated mutagenesis on S137 revealed that the S137G/Y207F mutant showed the highest D-alanyl-D-lactate synthesizing activity. Moreover, the mutant showed broad substrate specificity toward D-amino acid and recognized D-lactate and D,L-isoserine as substrates. On the basis of these characteristics, various depsipeptides can be produced using S137G/Y207F-replaced TmDdl.  相似文献   

3.
A simple procedure is described to obtain D- and L-allothreonine (D- and L-aThr). A mixture of N-acetyl-D-allothreonine (Ac-D-aThr) and N-acetyl-L-threonine (Ac-L-Thr) was converted to a mixture of their ammonium salts and then treated with ethanol to precipitate ammonium N-acetyl-L-threoninate (Ac-L-Thr·NH3) as the less-soluble diastereoisomeric salt. After separating Ac-L-Thr·NH3 by filtration, Ac-D-aThr obtained from the filtrate was hydrolyzed in hydrochloric acid to give D-aThr of 80% de, recrystallized from water to give D-aThr of >99% de. L-aThr was obtained from a mixture of the ammonium salts of Ac-L-aThr and Ac-D-Thr in a similar manner.  相似文献   

4.
An X-ray crystal structural analysis revealed that (2S,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-L-isoleucine; Ac-L-Ile) and (2R,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-D-alloisoleucine; Ac-D-aIle) formed a molecular compound containing one Ac-L-Ile molecule and one Ac-D-aIle molecule as an unsymmetrical unit. This molecular compound is packed with strong hydrogen bonds forming homogeneous chains consisting of Ac-L-Ile molecules or Ac-D-aIle molecules and weak hydrogen bonds connecting these homogeneous chains in a fashion similar to that observed for Ac-L-Ile and Ac-D-aIle. Recrystallization of an approximately 1:1 mixture of Ac-L-Ile and Ac-D-aIle from water gave an equimolar molecular compound due to its lower solubility than that of Ac-D-aIle or especially Ac-L-Ile. The results suggest that the equimolar mixture of Ac-L-Ile and Ac-D-aIle could be obtained from an Ac-L-Ile-excess mixture by recystallization from water.  相似文献   

5.
Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.  相似文献   

6.
A growth factor (TJF) for a malo-lactic fermentation bacterium (Leuconostoc sp.) has been found to be 4′-O-(β-D-glucopyranosyl)-D-pantothenic acid with structural and synthetical studies. Now other 4′-O-glycosides (β-D-ribofuranosyl, α-D-glucopyranosyl, β-D-galacto-pyranosyl, β-maltosyl and β-cellobiosyl) and 2′,4′-O-di-β-D-glucopyranoside of DL-pantothenic acid, and 4′-O-β-D-glucopyranoside of DL-pantethine were synthesized to examine their biological activities. The improved syntheses of TJF were also examined.  相似文献   

7.
The transglucosidation reaction of brewer’s yeast α-glucosidase was examined under the co-existence of l-sorbose and phenyl-α-glucoside. As the transglucosidation products, three kinds of new disaccharide were chromatographically isolated. It was presumed that these disaccharides consisting of d-glucose and l-sorbose were 1-O-α-d-glucopyranosyl-l-sorbose ([α]D+89.0), 3-O-α-d-glucopyranosyl-l-sorbose ([α]D+69.1) and 4-O-α-d-glucopyranosyl-l-sorbose ([α]D+81.0). The principal product formed in the enzyme reaction was 1-O-α-d-glucopyranosyl-l-sorbose.  相似文献   

8.
Delipidated cell walls from Aureobasidium pullulans were fractionated systematically.

The cell surface heteropolysaccharide contains D-mannose, D-galactose, D-glucose, and D-glucuronic acid (ratio, 8.5:3.9:1.0:1.0). It consists of a backbone of (1→6)-α-linked D-mannose residues, some of which are substituted at O-3 with single or β-(1→6)-linked D-galactofuranosyl side chains, some terminated with a D-glucuronic acid residue, and also with single residues of D-glucopyranose, D-galactopyranose, and D-mannopyranose.

This glucurono-gluco-galactomannan interacted with antiserum against Elsinoe leucospila, which also reacted with its galactomannan, indicating that both polysaccharides contain a common epitope, i.e., at least terminal β-galactofuranosyl groups and also possibly internal β-(1→6)-linked galactofuranose residues.

It was further separated by DEAE-Sephacel column chromatography to gluco-galactomannan and glucurono-gluco-galactomannan.

The alkali-extracted β-D-glucan was purified by DEAE-cellulose chromatography to afford two antitumor-active (1→3)-β-D-glucans. One of the glucans (Mr, 1–2 × 105) was a O-6-branched (1→3)-β-D-glucan with a single β-D-glucosyl residue, d.b., 1/7, and the other (Mr, 3.5–4.5 × 105) had similar branched structure, but having d.b., 1/5. Side chains of both glucans contain small proportions of β-(1→6)-and β-(1→4)-D-glucosidic linkages.  相似文献   

9.
An extracellular polysaccharide elaborated by a new species of Beijerinckia indica, named TX-1, was composed of D-glucose, L-fucose, D-glycero-D-manno-heptose, and D-glucuronic acid in a molar ratio of 5.0:1.0:2.0:0.9, in addition to 16.2% of the acetyl group. Among the polysaccharides of the Beijerinckia species, the present polysaccharide might be the first acidic type having an L-fucose residue. A methylation analysis, Smith degradation study and fragmentation analysis show that this polysaccharide consisted of non-reducing terminal D-glucose, O-4 substituted D-glucose, O-2 substituted D-glycero-D-manno-heptose, O-4 substituted D-glucuronic acid, O-3 and O-4 substituted D-glucose, and O-3 substituted L-fucose residues. A D-glucuronic acid residue was linked to the O-3 position of the L-fucose residue by an α-glycosidic linkage. Most of the D-glucose residues in the backbone chain were substituted at the O-3 position, with the side chain having non-reducing terminal D-glucose residues. It is suggested by the reaction with Con A that the anomeric configuration of the terminal D-glucose residues was β.  相似文献   

10.
The D-sorbitol dehydrogenase gene, sldA, and an upstream gene, sldB, encoding a hydrophobic polypeptide, SldB, of Gluconobacter suboxydans IFO 3255 were disrupted in a check of their biological functions. The bacterial cells with the sldA gene disrupted did not produce L-sorbose by oxidation of D-sorbitol in resting-cell reactions at pHs 4.5 and 7.0, indicating that the dehydrogenase was the main D-sorbitol-oxidizing enzyme in this bacterium. The cells did not produce D-fructose from D-mannitol or dihydroxyacetone from glycerol. The disruption of the sldB gene resulted in undetectable oxidation of D-sorbitol, D-mannitol, or glycerol, although the cells produced the dehydrogenase. The cells with the sldB gene disrupted produced more of what might be signal-unprocessed SldA than the wild-type cells did. SldB may be a chaperone-like component that assists signal processing and folding of the SldA polypeptide to form active D-sorbitol dehydrogenase.  相似文献   

11.
The best inducers for D-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) were a poor substrate, N-acetyl-;-methyl-D-leucine, and an inhibitor, N-acetyl-D-alloisoleucine. The enzyme has been homogeneously purified. The molecular weight of the native enzyme was estimated to be 58,000 by gel filtration. A subunit molecular weight of 52,000 was measured by SD8–PAGE, indicating that the native protein is a monomer. The isoelectric point was 5.2. The enzyme was specific to the D-isomer and hydrolyzed N-acetyl derivatives of D-leucine, D-phenylalanine, D-norleucine, D-methionine, and D-valine, and also N-formyl, N-butyryl, and N-propionyl derivatives of D-leucine. The Km for N-acetyl-D-leucine was 9.8mM. The optimum pH and temperature were 7.0 and 50°C, respectively. The stabilities of pH and temperature were 8.1 and 40°C. D-Aminoacylases from three species of the genus Alcaligenes differ in inducer and substrate specificities, but are similar with respect to molecular weight and N-terminal amino acid sequence.  相似文献   

12.
The glycoside composition and sequence of an extracellular polysaccharide flocculant of Klebsiella pneumoniae H12 was analyzed. GC and HPLC analysis of the acid-hydrolysate identified its constituent monosaccharides as D-Glc, D-Man, D-Gal, and D-GlcA in an approximate molar ratio of 3.9:1.0:2.3:3.6. To analyze the glycoside sequence, the polysaccharide was partially hydrolyzed by acid and enzyme treatment. GC, HPLC, TLC, MALDI-TOF/MS, and 1H- and 13C- NMR spectroscopy characterized the obtained oligosaccharides.

The results clarified the partial structure of H12 polysaccharide as a linear polymer of a unit of pentasaccharide with a side chain of one D-GlcA to D-Glc moiety (see below). Although the existence of other sequences or other constituent glycosides could not be fully excluded, H12 polysaccharide must be a novel types as such a complicated unit for a polymer has not so far been reported. The partial structure of a H12 polysaccharide flocculant is also discussed in this report.

→4)- α-D-Glcp-(1→2)-α-D-Manp-(1→3)-4,6-Pyr-β-D- 3 Galp-(1→4)-β-D-Galp-(1→ ↓

1 β-D-GlcpA  相似文献   

13.
D-Alanine-D-alanine ligase (Ddl) and its mutants maintain the biosynthesis of peptidoglycan, and the substrate specificity of Ddls partially affects the resistance mechanism of vancomycin-resistant enterococci. Through investigation of Ddls, Ddl from Thermotoga maritima ATCC 43589 showed novel characteristics, vis. thermostability up to 90 °C and broad substrate specificity toward 15 D-amino acids, particularly D-alanine, D-cysteine, and D-serine, in that order.  相似文献   

14.
15.
β-N-Acetyl-D-hexosaminidase was isolated from the mid-gut gland of Patinopecten yessoensis. The enzyme was purifted by making an acetone-dried preparation of the mid-gut gland, extracting with 50 mM citrate-phosphate buffer (pH 4.0) (about 13% of the extracted proteins was β-N-acetyl-D-hexosaminidase), ammonium sulfate fractionation, and column chromatographies on CM-Sepharose and DEAE-Sepharose. The purifted β-N-acetyl-D-hexosaminidase was homogeneous on SDS–PAGE, and sufficiently free from other exo-type glycosidases. The molecular weight was 56,000 by SDS–PAGE. The enzyme hydrolyzed both p-nitrophenyl β-N-acetyl-D-glucosaminide and p-nitrophenyl β-N-acetyl-D-galactosaminide. For p-nitrophenyl β-N-acetyl-D-glucosaminide, the pH optimum was 3.7, the optimum temperature was 45°C, and the Km was 0.24 mM. For p-nitrophenyl β-N-acetyl-D-galactosaminide, these were pH 3.4, 45°C, and 0.15 mM, respectively. The enzyme liberated non-reducing terminal β-Iinked N-acetyl-D-glucosamine or N-acetyl-D-galactosamine from various 2-aminopyridyl derivatives of oligosaccharides of N-glycan or glycolipid type except of GM2-tetrasaccharide. As the enzyme was stable around pH 3.5–5.5, it may be useful for long time reactions around the optimum pH.  相似文献   

16.
Thermotolerant acetic acid bacteria belonging to the genus Gluconobacter were isolated from various kinds of fruits and flowers from Thailand and Japan. The screening strategy was built up to exclude Acetobacter strains by adding gluconic acid to a culture medium in the presence of 1% D-sorbitol or 1% D-mannitol. Eight strains of thermotolerant Gluconobacter were isolated and screened for D-fructose and L-sorbose production. They grew at wide range of temperatures from 10°C to 37°C and had average optimum growth temperature between 30-33°C. All strains were able to produce L-sorbose and D-fructose at higher temperatures such as 37°C. The 16S rRNA sequences analysis showed that the isolated strains were almost identical to G. frateurii with scores of 99.36-99.79%. Among these eight strains, especially strains CHM16 and CHM54 had high oxidase activity for D-mannitol and D-sorbitol, converting it to D-fructose and L-sorbose at 37°C, respectively. Sugar alcohols oxidation proceeded without a lag time, but Gluconobacter frateurii IFO 3264T was unable to do such fermentation at 37°C. Fermentation efficiency and fermentation rate of the strains CHM16 and CHM54 were quite high and they rapidly oxidized D-mannitol and D-sorbitol to D-fructose and L-sorbose at almost 100% within 24 h at 30°C. Even oxidative fermentation of D-fructose done at 37°C, the strain CHM16 still accumulated D-fructose at 80% within 24 h. The efficiency of L-sorbose fermentation by the strain CHM54 at 37°C was superior to that observed at 30°C. Thus, the eight strains were finally classified as thermotolerant members of G. frateurii.  相似文献   

17.
Regioselective deacetylations of nine glycosides catalyzed by acetyl xylan esterase from Bacillus pumilus have been studied. The glycosides were methyl and benzyl glycosides of the tetraacetates of α-D-glucopyranose, α-D-galactopyranose and α-D-mannopyranose, and the methyl glycosides of tetra-O-acetyl-β-D-glucopyranose, tetra-O-acetyl-β-D-galactopyranose and tetra-O-acetyl-α-D-glucopyranose. The kinetics of successive deacetylations was monitored by GLC and 21 sugar acetates have been identified.  相似文献   

18.
Unlabeled D- and L-alanine were racemized in deuterium oxide with an alanine racemase of Bacillus stearothermophilus at saturated concentration of substrate, and various p2H and temperature. Samples of the solution were taken at intervals, and all alanine isomers in the samples were transformed into a mixture of diastereomeric derivatives of methyl N-(–)-camphanylalaninate. Their ratio was measured on a GC-Mass, and the relative rate was calculated at the initial stage of the reaction. There was little difference in the decrease rate of the optical rotation between the enantiomers. Internal proton-transfer to the antipode was almost zero for either substrate. The α-hydrogen was abstracted 1.2–2.3 times faster from D-alanine than from L-alanine. D-Alanine gave an almost even mixture of deuterium labeled D- and L-alanine, while L-alanine gave a mixture of labeled D- and L-alanine at a ratio of 3:1. These results suggest the racemase builds two different bases in the active site. The base for D-alanine may be closer to the enzyme surface, and that for L-alanine inside.  相似文献   

19.
The cepA putative gene encoding a cellobiose phosphorylase of Thermotoga maritima MSB8 was cloned, expressed in Escherichia coli BL21-codonplus-RIL and characterized in detail. The maximal enzyme activity was observed at pH 6.2 and 80°C. The energy of activation was 74 kJ/mol. The enzyme was stable for 30 min at 70°C in the pH range of 6-8. The enzyme phosphorolyzed cellobiose in an random-ordered bi bi mechanism with the random binding of cellobiose and phosphate followed by the ordered release of D-glucose and α-D-glucose-1-phosphate. The K m for cellobiose and phosphate were 0.29 and 0.15 mM respectively, and the k cat was 5.4 s-1. In the synthetic reaction, D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, and 6-deoxy-D-glucose were found to act as glucosyl acceptors. Methyl-β-D-glucoside also acted as a substrate for the enzyme and is reported here for the first time as a substrate for cellobiose phosphorylases. D-Xylose had the highest (40 s-1) k cat followed by 6-deoxy-D-glucose (17 s-1) and 2-deoxy-D-glucose (16 s-1). The natural substrate, D-glucose with the k cat of 8.0 s-1 had the highest (1.1×104 M-1 s-1) k cat/K m compared with other glucosyl acceptors. D-Glucose, a substrate of cellobiose phosphorylase, acted as a competitive inhibitor of the other substrate, α-D-glucose-1-phosphate, at higher concentrations.  相似文献   

20.
The transesterification of D-allose (the C-3 epimer of D-glucose) with vinyl octanoate using Candida antarctica lipase in tetrahydrofuran proceeded with high regioselectivity to produce 6-O-octanoyl-D-allose with nearly complete conversion. The growth-inhibiting activity of 6-O-octanoyl-D-allose on lettuce seedlings was about 6-fold greater than that of D-allose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号