首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently compiled a complete list of phosphorelay signal transduction components in the model filamentous fungus Aspergillus nidulans. In this study, we characterized a histidine protein kinase (designated NikA) that is found in many fungi, with special reference to responses to potent fungicides (iprodione and fludioxonil). We provided evidence that not only NikA, but also two downstream response regulators (SskA and SrrA) are crucially implicated in the mode of action of these fungicides, and also that the further downstream HogA-MAPK cascade is exaggerated abnormally (or ectopically) in hyphae by the fungicides in a manner dependent on the NikA-SskA phosphorelay.  相似文献   

2.
We recently compiled a complete list of phosphorelay signal transduction components in the model filamentous fungus Aspergillus nidulans. In this study, we characterized a histidine protein kinase (designated NikA) that is found in many fungi, with special reference to responses to potent fungicides (iprodione and fludioxonil). We provided evidence that not only NikA, but also two downstream response regulators (SskA and SrrA) are crucially implicated in the mode of action of these fungicides, and also that the further downstream HogA-MAPK cascade is exaggerated abnormally (or ectopically) in hyphae by the fungicides in a manner dependent on the NikA-SskA phosphorelay.  相似文献   

3.
4.
Among eukaryotes, only slime molds, fungi, and plants contain signal transduction phosphorelay systems. In filamentous fungi, multiple sensor kinases appear to use a single histidine-containing phosphotransfer (HPt) protein to relay signals to two response regulators (RR). In Aspergillus nidulans, the RR SskA mediates activation of the mitogen-activated protein kinase SakA in response to osmotic and oxidative stress, whereas the functions of the RR SrrA were unknown. We used a genetic approach to characterize the srrA gene as a new member of the skn7/prr1 family and to analyze the roles of SrrA in the phosphorelay system composed of the RR SskA, the HPt protein YpdA, and the sensor kinase NikA. While mutants lacking the HPt protein YpdA are unviable, mutants lacking SskA (DeltasskA), SrrA (DeltasrrA), or both RR (DeltasrrA DeltasskA) are viable and differentially affected in osmotic and oxidative stress responses. Both RR are involved in osmostress resistance, but DeltasskA mutants are more sensitive to this stress, and only SrrA is required for H(2)O(2) resistance and H(2)O(2)-mediated induction of catalase CatB. In contrast, both RR are individually required for fungicide sensitivity and calcofluor resistance and for normal sporulation and conidiospore viability. The DeltasrrA and DeltasskA sporulation defects appear to be related to decreased mRNA levels of the key sporulation gene brlA. In contrast, conidiospore viability defects do not correlate with the activity of the spore-specific catalase CatA. Our results support a model in which NikA acts upstream of SrrA and SskA to transmit fungicide signals and to regulate asexual sporulation and conidiospore viability. In contrast, NikA appears dispensable for osmotic and oxidative stress signaling. These results highlight important differences in stress signal transmission among fungi and define a phosphorelay system involved in oxidative and osmotic stress, cell wall maintenance, fungicide sensitivity, asexual reproduction, and spore viability.  相似文献   

5.
His-Asp phosphorelays are widespread signal transduction mechanisms in bacteria, fungi, and higher plants. In order to investigate a His-Asp phosphorelay network in filamentous fungi, which has been genetically characterized in part, we attempted to construct an in vitro phosphotransfer network in Aspergillus nidulans comprising all the necessary components. As a first step, we established an in vitro phosphotransfer system with a histidine-containing phosphotransmitter YpdA, a response regulator SrrA, and a bacterial histidine kinase ArcB as a phosphate donor. We demonstrated the phosphotransfer from ArcB to A. nidulans YpdA and the subsequent transfer from YpdA to SrrA. This is the first direct biochemical evidence for the presence of the phosphotransfer system in filamentous fungi. Furthermore, a retrograde phosphorylation from YpdA to FphA, a histidine kinase similar to bacterial phytochrome, was found. The overall picture of the His-Asp phosphorelays in A. nidulans is discussed based on the results of the in vitro study.  相似文献   

6.
Histidine-to-Aspartate (His-Asp) phosphorelay (or two-component) systems are common signal transduction mechanisms implicated in a wide variety of cellular responses to environmental stimuli in both prokaryotes and eukaryotes. For a model filamentous fungi, Aspergillus nidulans, in this study we first compiled a complete list of His-Asp phosphorelay components, including 15 genes for His-kinase (HK), four genes for response regulator (RR), and only one for histidine-containing phosphotransfer intermediate (HPt). For these RR genes, a set of deletion mutants was constructed so as to create a null allele for each. When examined these mutant strains under various conditions stressful for hyphal growth and asexual spore development, two of them (designated DeltasskA and DeltasrrA) showed a marked phenotype of hypersensitivity to oxidative stresses (particularly, to hydrogen peroxide). In this respect, expression of the vegetative-stage specific catB catalase gene was severely impaired in both mutants. Furthermore, conidia from DeltasskA were hypersensitive not only to treatment with H(2)O(2), but also to treatment at aberrantly low (4 degrees C) and high (50 degrees C) temperatures, resulting in reduced germination efficiency. In this respect, not only the catA catalase gene specific for asexual development, but also a set of genes encoding the enzymes for synthesis of certain stress tolerant compatible solutes, such as trehalose and glycerol, were markedly downregulated in conidia from DeltasskA. These results together are indicative of the physiological importance of the His-Asp phosphorelay signaling network involving the SskA and SrrA response regulators.  相似文献   

7.
8.
The His-Asp phosphorelay signal transduction system has been identified in most organisms, including bacteria, yeasts, fungi, and plants, except for animals. This system is important in adaptation to stress, control of cell growth, and induction of development in response to environmental changes. On the basis of genomic information, it has been found that Aspergillus nidulans, a model species of fungi, includes 15 histidine kinases (HKs), one histidine-containing phosphotransmitter protein (HPt), and four response regulators (RRs) as factors related to the signal transduction system. In this review, it is explain that the His-Asp phosphorelay system is important in controlling cell growth (responses to fungicides, the induction of asexual and sexual development, and so on) under different growth conditions with reference to A. nidulans.  相似文献   

9.
10.
Histidine-to-aspartate (His-Asp) phosphorelay (or two-component) systems are very common signal transduction mechanisms that are implicated in a wide variety of cellular responses to environmental stimuli. The His-Asp phosphorelay components include "sensor histidine kinase (HK)", "phosphotransfer intermediate (HPt)", and "response regulator (RR)". With special reference to three bacterial species (Mesorhizobium loti, Bradyrhizobium japonicum, Sinorhizobium meliloti), each of which belongs to a different genera of Rhizobia, here we attempted to compile all of the His-Asp phosphorelay components in order to reveal a comparative genome-wide overview as to the His-Asp phosphorelay. It was revealed that M. loti has 47 HKs, 1 HPts, and 58 RRs; B. japonicum has 80 HKs, 3 HPts, and 91 RRs; whereas S. meliloti has 40 HKs, 1 HPt, and 58 RRs. These His-Asp phosphorelay components were extensively compiled and characterized. The resulting overview as to the His-Asp phosphorelay of Rhizobia will provide us with a basis for understanding of the fundamental mechanisms underlying interactions between plants and microorganisms (including symbiosis), as well as nitrogen fixation.  相似文献   

11.
Carbon dioxide (CO2) and its hydration product bicarbonate (HCO3) are essential molecules in various physiological processes of all living organisms. The reversible interconversion between CO2 and HCO3 is in equilibrium. This reaction is slow without catalyst, but can be rapidly facilitated by Zn2+‐metalloenzymes named carbonic anhydrases (CAs). To gain an insight into the function of multiple clades of fungal CA, we chose to investigate the filamentous fungi Aspergillus fumigatus and A. nidulans. We identified four and two CAs in A. fumigatus and A. nidulans, respectively, named cafA‐D and canA‐B. The cafA and cafB genes are constitutively, strongly expressed whereas cafC and cafD genes are weakly expressed but CO2‐inducible. Heterologous expression of the A. fumigatus cafB, and A. nidulans canA and canB genes completely rescued the high CO2‐requiring phenotype of a Saccharomyces cerevisiaeΔnce103 mutant. Only the ΔcafAΔcafB and ΔcanB deletion mutants were unable to grow at 0.033% CO2, of which growth defects can be restored by high CO2. Defects in the CAs can affect Aspergilli conidiation. Furthermore, A. fumigatusΔcafA, ΔcafB, ΔcafC, ΔcafD and ΔcafAΔcafB mutant strains are fully virulent in a low‐dose murine infection.  相似文献   

12.
Genes for histidyl-aspartyl (His-Asp) phosphorelay components (His-containing phosphotransfer proteins, HP, and response regulators, RR) were isolated from Zea mays L. to characterize their function in cytokinin signaling. Six type-A RRs (ZmRR1, ZmRR2, ZmRR4–ZmRR7), 3 type-B RRs (ZmRR8–ZmRR10), and 3 HPs (ZmHP1–ZmHP3) were found in leaves. All type-A RR genes expressed in leaves were up-regulated by exogenous cytokinin. Transient expression of fusion products of the signaling modules with green fluorescent protein in epidermal leaf cells suggested cytosolic and nuclear localizations of ZmHPs, whereas type-B ZmRR8 was restricted to the nucleus. Type-A RRs were localized partly to the cytosol (ZmRR1, ZmRR2, and ZmRR3) and partly to the nucleus (ZmRR4, ZmRR5, and ZmRR6). In the yeast two-hybrid assay, ZmHP1 and ZmHP3 interacted with both cytosolic ZmRR1 and nuclear type-B ZmRRs. In vitro experiments demonstrated that ZmHPs function as a phospho-donor for ZmRRs; turnover rates of the phosphorylated state were tenfold lower in ZmRR8 and ZmRR9 than in ZmRR1 and ZmRR4. These results suggest that the His-Asp phosphorelay signaling pathway might diverge into a cytosolic and a nuclear branch in leaves of maize, and that the biochemical nature of ZmRRs is different in terms of stability of the phosphorylated status.  相似文献   

13.
His-Asp phosphorelay systems have been recently discovered in plants and have emerged as some of the most important signaling systems. The phosphorelay systems in plants include components with sensor (His-protein kinase) domains, His-containing phosphotransfer (HPt) domains, and receiver (response regulator) domains. Recent studies implicate phosphorelay systems in sensing and propagating signals from a wide variety of external and/or internal stimuli such as ethylene, cytokinin, and osmolarity. In maize and Arabidopsis, some response regulators are up-regulated by both cytokinins and nitrate. These findings imply that the His-Asp phosphorelay may operate in an inorganic nitrogen-signaling pathway mediated by cytokinin in plants.  相似文献   

14.
15.
In addition to their fundamental role in nutrient recycling, saprobiotic microorganisms may be considered as typical consumers of food‐limited ephemeral resource patches. As such, they may be engaged in inter‐specific competition with saprophagous animals feeding from the same resource. Bacteria and filamentous fungi are known to synthesise secondary metabolites, some of which are toxic and have been proposed to deter or harm animals. The microorganisms may, however, also be negatively affected if saprophagous animals do not avoid microbe‐laden resources but feed in the presence of microbial competitors. We hypothesised that filamentous fungi compete with saprophagous insects, whereby secondary metabolites provide a chemical shield against the insect competitors. For testing this, we developed a new ecological model system representing a case of animal–microbe competition between saprobiotic organisms, comprising Drosophila melanogaster and species of the fungus Aspergillus (A. nidulans, A. fumigatus, A. flavus). Infestation of Drosophila breeding substrate with proliferating fungal colonies caused graduated larval mortality that strongly depended on mould species and colony age. Confrontation with conidiospores only, did not result in significant changes in larval survival, suggesting that insect death may not be ascribed to pathogenic effects. When confronted with colonies of transgenic fungi that lack the ability to express the global secondary metabolite regulator LaeA (ΔlaeA), larval mortality was significantly reduced compared to the impact of the wild type strains. Yet, also in the ΔlaeA strains, inter‐specific variation in the influence on insect growth occurred. Competition with Drosophila larvae impaired fungal growth, however, wild type colonies of A. nidulans and A. flavus recovered more rapidly from insect competition than the corresponding ΔlaeA mutants (not in A. fumigatus). Our findings provide genetic evidence that toxic secondary metabolites synthesised by saprotrophic fungi may serve as a means to combat insect competitors. Variation in the ability of LaeA to control expression of various secondary metabolite gene clusters might explain the observed species‐specific variation in DrosophilaAspergillus competition.  相似文献   

16.
17.
18.
Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions.  相似文献   

19.

Intracellular trehalose accumulation is relevant to fungal life and pathogenicity. Trehalose-6-phosphate synthase (TPS) is known to control the first step of trehalose synthesis, but functions of multiple TPS genes in some filamentous fungi are variable. Here, we examined the functions of two TPS genes (tpsA and tpsB) in Beauveria bassiana, a fungal insect pathogen widely applied in arthropod pest control. Intracellular TPS activity and trehalose content decreased by 71–75 and 72–80% in ΔtpsA, and 21–30 and 15–45% in ΔtpsB, respectively, and to undetectable levels in ΔtpsAΔtpsB, under normal and stressful conditions. The three mutants lost 33, 50, and 98% of conidiation capacity in standard cultures. Conidial quality indicated by viability, density, intracellular trehalose content, cell wall integrity, and hydrophobicity was more impaired in ΔtpsA than in ΔtpsB and mostly in ΔtpsAΔtpsB, which was also most sensitive to nutritional, chemical, and environmental stresses and least virulent to Galleria mellonella larvae. Almost all of phenotypic defects in ΔtpsAΔtpsB approached to the sums of those observed in ΔtpsA and ΔtpsB and were restored by targeted gene complementation. Altogether, TpsA and TpsB play complementary roles in sustaining trehalose synthesis, conidiation capacity, conidial quality, multiple stress tolerance, and virulence, highlighting a significance of both for the fungal adaptation to environment and host.

  相似文献   

20.
In medically important fungi, regulatory elements that control development and asexual reproduction often govern the expression of virulence traits. We therefore cloned the Aspergillus fumigatus developmental modifier MedA and characterized its role in conidiation, host cell interactions and virulence. As in the model organism Aspergillus nidulans, disruption of medA in A. fumigatus dramatically reduced conidiation. However, the conidiophore morphology was markedly different between the two species. Further, gene expression analysis suggested that MedA governs conidiation through different pathways in A. fumigatus compared with A. nidulans. The A. fumigatusΔmedA strain was impaired in biofilm production and adherence to plastic, as well as adherence to pulmonary epithelial cells, endothelial cells and fibronectin in vitro. The ΔmedA strain also had reduced capacity to damage pulmonary epithelial cells, and stimulate pro‐inflammatory cytokine mRNA and protein expression. Consistent with these results, the A. fumigatusΔmedA strain also exhibited reduced virulence in both an invertebrate and a mammalian model of invasive aspergillosis. Collectively, these results suggest that the downstream targets of A. fumigatus MedA mediate virulence, and may provide novel therapeutic targets for invasive aspergillosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号