首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A recombinant chymosin was secreted at high levels using fusion genes with A. oryzae glucoamylase gene (glaA) and a wheat bran solid-state culture system. Two portions of the A. oryzae glucoamylase, one with almost the entire glucoamylase (GA1–603) lacking 9 amino acids at the carboxyl terminal, and the other (GA1–511) lacking the starch binding-domain, were fused in frame with prochymosin cDNA. Western blot analysis indicated that the mature chymosin was released from the secreted fusion protein by autocatalytic processing. The transformant harboring the GA1-511-prochymosin construct showed about 5-fold chymosin production of the transformant in which the chymosin gene was directly expressed under the control of the glaA promoter in submerged culture. Moreover, wheat bran solid-state culture gave about 500-fold higher yield of the chymosin (approximately 150 mg/kg wheat bran) compared with the submerged culture.  相似文献   

3.
Even though most fungal hydrolytic enzymes have been successfully secreted in S. cerevisiae cells by expression of corresponding cDNA, overexpression of A. oryzae RNase T1 causes severe growth inhibition in yeast. We observed that yeast strains carrying RNase T1 cDNA under control of the GAL1 promoter with a single-copy vector were able to grow on galactose medium while those with a multi-copy vector were not. It was found that overexpression of three mutated versions of RNase T1 with low enzymatic activity did not affect the growth. We also observed that expression of RNase T1 without a signal sequence severely inhibited growth of the transformant even on the single-copy plasmid. Subcellular fractionation showed that overexpressed myc-tagged RNase T1 was localized in the membrane fraction. In the yeast secretory pathway, while the mutants defective in translocation into the ER, ER-Golgi trafficking and vacuole formation had severe growth inhibition during expression of RNase T1 from the single-copy plasmid. These results suggest that a mislocalization of active RNase T1 in cytosol by overflow from the secretory apparatus has toxic effects on the host cells.  相似文献   

4.
The lactonase gene of Fusarium oxysporum was expressed in Aspergillus oryzae for optical resolution of dl-pantoyl lactone. When the chromosomal gene encoding the full-length form of the lactonase, which has its own NH2-terminal signal peptide, was introduced in the host cells, the resulting transformant produced an enzyme of 46,600 Da, which corresponded to the wild-type enzyme. In contrast, A. oryzae transformed with the cDNA coding the mature enzyme produced a protein of 41,300 Da. Deglycosylation analysis with an endoglycosidase revealed that the difference in molecular mass arose from the different sugar contents of the recombinant enzymes. The mycelia of the transformant were used as a catalyst for asymmetric hydrolysis of dl-pantoyl lactone. The initial velocity of the asymmetric hydrolysis reaction catalyzed by the transformant was estimated to be 30 times higher than that by F. oxysporum. When the mycelia of the transformant were incubated with a 20% dl-pantoyl lactone solution for 4 h, 49.9% of the racemic mixture was converted to d-pantoic acid (>95% ee).  相似文献   

5.
We isolated a β-N-acetylglucosaminidase encoding gene and its cDNA from the filamentous fungus Aspergillus nidulans, and designated it nagA. The nagA gene contained no intron and encoded a polypeptide of 603 amino acids with a putative 19-amino acid signal sequence. The deduced amino acid sequence was very similar to the sequence of Candida albicans Hex1 and Trichoderma harzianum Nag1. Yeast cells containing the nagA cDNA under the control of the GAL1 promoter expressed β-N-acetylglucosaminidase activity. The chromosomal nagA gene of A. nidulans was disrupted by replacement with the argB marker gene. The disruptant strains expressed low levels of β-N-acetylglucosaminidase activity and showed poor growth on a medium containing chitobiose as a carbon source. Aspergillus oryzae strain carrying the nagA gene under the control of the improved glaA promoter produced large amounts of β-N-acetylglucosaminidase in a wheat bran solid culture.  相似文献   

6.
《Gene》1998,207(2):127-134
The DNA (glaB) and a cDNA-encoding glucoamylase produced in solid-state culture of Aspergillus oryzae were cloned using oligodeoxyribonucleotide probes derived from internal amino acid sequences of the enzyme. Comparison of the nucleotide sequences of a genomic DNA fragment with its cDNA showed the glaB gene carried three exons interrupted by two introns and had an open reading frame encoding 493 aa residues. The 5′-flanking region had a TATA box at nt −87 from the start codon and two putative CAAT sequences at nt −276 and −288. The glaB gene shared 57% homology at the aa level with the glaA gene which was cloned previously from A. oryzae. Interestingly, the glucoamylase encoded by the glaB gene had no C-terminal domain such as that proposed to have starch binding activity in Aspergillus glucoamylases. Introduction of cDNA of the glaB gene to Saccharomyces cerevisiae caused the secretion of active glucoamylase to culture medium and introduction of the glaB gene to A. oryzae increased glucoamylase productivity in solid-state culture. Northern blot analysis showed the glaB gene was expressed in solid-state culture, but not in submerged culture.  相似文献   

7.
An intracellular nuclease inhibitor was 1270 times purified from a heat treated cell free extract of fresh mycelia of Aspergillus oryzae, by ammonium sulfate fractionation and chromatographies using DEAE-cellulose and Sephadex G-75. The purified sample of the inhibitor showed a UV absorption curve typical for protein, and it was inactivated by proteases such as chymotrypsin. The inhibitor stoichiometrically inactivated nuclease O (an intracellular nuclease of Asp. oryzae), forming an enzyme-inhibitor complex. But, it did not affect nuclease S1, RNase T1, RNase T2 or pancreatic RNase. The inhibitor was insensitive to 10?5m p-chloromercuribenzoate or 10?4m Pb2+. Molecular weights estimated by the method of Andrews were 23,000 for the inhibitor, 47,000 for nuclease O, and 82,000 for the enzyme-inhibitor complex. The nuclease activity was recovered from the inactive complex by the action of chymotrypsin.

Nuclease O of Asp. oryzae was purified and crystallized from 113.5 kg of wet mycelia and 2 kl of culture filtrate, by salting out with ammonium sulfate and by chromatographies on CM-Sephadex C-50 and Sephadex G-100. The purified nuclease showed a single peak with apparent sedimentation constant 2.9S in an ultracentrifuge. The molecular weight measured by short column method was 64,000. The nuclease was completely inhibited by the specific nuclease inhibitor obtained from Asp. oryzae. The nuclease was activated by 0.1 mm Mg2+ and Mn2+, and completely inhibited by 1 mm EDTA. Optimum pH for activity was 7.6 for RNA and 7.4 for DNA. The nuclease degraded polyadenylic acid, polyuridylic acid and polycytidylic acid without forming detectable amount of mononucleotides. And, the main product from RNA was oligonucleotides. The enzyme showed no nonspecific phosphodiesterase activity.  相似文献   

8.
Hydrophobic surface binding protein A (HsbA) is a secreted protein (14.5 kDa) isolated from the culture broth of Aspergillus oryzae RIB40 grown in a medium containing polybutylene succinate-co-adipate (PBSA) as a sole carbon source. We purified HsbA from the culture broth and determined its N-terminal amino acid sequence. We found a DNA sequence encoding a protein whose N terminus matched that of purified HsbA in the A. ozyzae genomic sequence. We cloned the hsbA genomic DNA and cDNA from A. oryzae and constructed a recombinant A. oryzae strain highly expressing hsbA. Orthologues of HsbA were present in animal pathogenic and entomopathogenic fungi. Heterologously synthesized HsbA was purified and biochemically characterized. Although the HsbA amino acid sequence suggests that HsbA may be hydrophilic, HsbA adsorbed to hydrophobic PBSA surfaces in the presence of NaCl or CaCl2. When HsbA was adsorbed on the hydrophobic PBSA surfaces, it promoted PBSA degradation via the CutL1 polyesterase. CutL1 interacts directly with HsbA attached to the hydrophobic QCM electrode surface. These results suggest that when HsbA is adsorbed onto the PBSA surface, it recruits CutL1, and that when CutL1 is accumulated on the PBSA surface, it stimulates PBSA degradation. We previously reported that when the A. oryzae hydrophobin RolA is bound to PBSA surfaces, it too specifically recruits CutL1. Since HsbA is not a hydrophobin, A. oryzae may use several types of proteins to recruit lytic enzymes to the surface of hydrophobic solid materials and promote their degradation.  相似文献   

9.
A full-length cDNA sequence of Aoxyn11A, a mesophilic xylanase-encoding gene from Aspergillus oryzae, was obtained from total RNA, using 3′ and 5′ rapid amplification of cDNA ends methods. The cDNA sequence is 1,086 base pairs in length, containing 5′-untranslated and 3′-untranslated regions and an open reading frame encoding a 20 amino acid (aa) signal peptide, a 24 aa propeptide and a 188 aa mature peptide (designated AoXyn11A). Multiple alignments verified that AoXyn11A belongs to glycoside hydrolase family 11. Its three-dimensional structure was predicted by multiple templates–based homology modeling. In addition, an AoXyn11A-encoding cDNA gene was extracellularly expressed in Pichia pastoris GS115, mediated by the modified pPIC9K vector. One P. pastoris transformant, numbered as GSAorX4-3 and having the highest recombinant AoXyn11A (reAoXyn11A) activity of 98.0 U/ml, was chosen. The reAoXyn11A showed maximum activity at pH 5.5 and 50 °C. It was highly stable at a pH range of 4.0–8.0 and at 40 °C. Its activity was not significantly affected by metal ions that were tested or EDTA, but was strongly inhibited by Mn2+ and Ag+. The K m and V max of the reAoXyn11A were 1.85 mg/ml and 3,018 U/mg, respectively.  相似文献   

10.
For the development of an efficient gene expression system in a shoyu koji mold Aspergillus oryzae KBN616, the TEF1 gene, encoding translation-elongation factor 1α, was cloned from the same strain and used for expression of polygalacturonase genes. The TEF1 gene comprised 1647 bp with three introns. The TEF1-α protein consisted of 460 amino acids possessing high identity to other fungal TEF proteins. Two nucleotide sequences homologous to the upstream activation sequence, characterized for the ribosomal protein genes in Saccharomyces cerevisiae, as well as the pyrimidine-rich sequences were present in the TEF1 gene promoter region, suggesting that the A. oryzae TEF1 gene has a strong promoter activity. Two expression vectors, pTFGA300 and pTFGB200 for production of polygalacturonases A and B respectively, were constructed by using the TEF1 gene promoter. A polygalacturonase (PGB) gene cloned from the same strain comprised 1226 bp with two introns and encoded a protein of 367 amino acids with high similarity to other fungal polygalacturonases. PGA and PGB were secreted at approximately 100 mg/l in glucose medium and purified to homogeneity. PGA had a molecular mass of 41 kDa, a pH optimum of 5.0 and temperature optimum of 45 °C. PGB had a molecular mass of 39 kDa, a pH optimum of 5.0 and temperature optimum of 55 °C. Received: 28 November 1997 / Received revision: 24 February 1998 / Accepted: 6 March 1998  相似文献   

11.
A protein from the cell lysate of Aspergillus oryzae was purified by column chromatography immobilized with a ferrichrysin (Fcy), which is one of the siderophores of A. oryzae. It is produced only in an iron-deficient culture and its molecular weight is estimated as 35,000 by SDS-PAGE. Two internal amino acid sequences of the protein obtained by lysylendopeptidase digestion were analyzed. Molecular cloning shows that it encodes 310 putative amino acid residues separated by 4 introns and is designated as fleA. It shows approximately 26% similarity with the gene encoding a fucose-specific lectin of Aleuria aurantia (AAL). The gene was overexpressed under control of the melO promoter in a submerged culture of A. oryzae. The fleA gene product showed hemagglutination activity against rabbit erythrocytes. A hemagglutination inhibition assay of monosaccharides showed that this lectin specifically binds to L-fucose and weakly reacts with mannose and N-acetyl-neuraminic acid.  相似文献   

12.

The hypersensitive response (HR) is a form of programmed cell death of plant cells occurring in the local region surrounding pathogen infection site to prevent the spread of infection by pathogens. Bax, a mammalian pro-apoptotic member of Bcl-2 family, triggers HR-like cell death when expressed in plants. However, constitutive expression of the Bax gene negatively affects plant growth and development. The Xa10 gene in rice (Oryza sativa) is an executor resistance (R) gene that confers race-specific disease resistance to Xanthomonas oryzae pv. oryzae strains harboring TAL effector gene AvrXa10. In this study, the Xa10 promoter was used to regulate heterologous expression of the Bax gene from mouse (Mus musculus) in Nicotiana benthamiana and rice. Cell death was induced in N. benthamiana after co-infiltration with the PXa10:Bax:TXa10 gene and the PPR1:AvrXa10:TNos gene. Transgenic rice plants carrying the PXa10:Bax:TXa10 gene conferred specific disease resistance to Xa10-incompatible X. oryzae pv. oryzae strain PXO99A(pHM1AvrXa10), but not to the Xa10-compatible strain PXO99A(pHM1). The resistance specificity was confirmed by the AvrXa10-dependent induction of the PXa10:Bax:TXa10 gene in transgenic rice. Our results demonstrated that the inducible expression of the Bax gene in transgenic rice was achieved through the control of the executor R gene promoter and the heterologous expression of the pro-apoptosis regulator gene in rice conferred disease resistance to X. oryzae pv. oryzae.

  相似文献   

13.
The gene encoding xylanase G2 (xynG2) was isolated from a genomic library of Aspergillus oryzae KBN616, used for making shoyu koji. The structural part of xynG2 was found to be 767 bp. The nucleotide sequence of cDNA amplified by RT-PCR showed that the open reading frame of xynG2 was interrupted by a single intron which was 71 bp in size and encoded 232 amino acids. Direct N-terminal amino acid sequencing showed that the precursor of XynG2 had a signal peptide of 44 amino acids. The predicted amino acid sequence of XynG2 has strong similarity to other family 11 xylanases from fungi. The xynG2 gene was successfully overexpressed in A. oryzae and the overpexpressed XynG2 was purified. The molecular weight of XynG2 estimated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 21,000. This was almost the same as the molecular weight of 20,047 calculated from the deduced amino acid sequence. The purified XynG2 showed an optimum activity at pH 6.0 and 58°C. It had a Km of 5.1 mg/ml and a Vmax of 123 μmol/min/mg when birch wood xylan was used as a substrate.  相似文献   

14.
Aims: Aspartyl aminopeptidase (DAP) has a high degree of substrate specificity, degrading only amino-terminal acidic amino acids from peptides. Therefore, attention is focused here on the efficient production of this enzyme by a recombinant Aspergillus oryzae and characterization of its biochemical properties. Methods and Results: The gene encoding DAP was overexpressed under a taka-amylase gene promoter, with His-tag linker in A. oryzae, during cultivation in a Co2+-containing medium. The enzyme was extracted from the mycelia and purified with immobilized nickel ion absorption chromatography using a buffer containing cobalt ion and imidazole. The active fraction was further purified with gel filtration chromatography. The resultant, electrophoretically pure enzyme displayed a molecular mass of 520 kDa. This enzyme displayed high reactivity towards peptide substrate rather than synthetic substrates. Conclusions: Recombinant A. oryzae DAP was purified to homogeneity with an increased specific activity, when cultivated in a Co2+-rich medium. Moreover, the use of suitable metal ions in microbial cultivation and purification processes may help in increasing the specific activity of other metalloproteases and their functional analysis. Significance and Impact of the Study: Recombinant DAP produced using a cobalt ion in culture media of A. oryzae and purification process allow high yield of the enzyme activity.  相似文献   

15.
The Colletotrichum lagenarium PKS1 gene was expressed in the heterologous fungal host, Aspergillus oryzae, under the starch-inducible α-amylase promoter to identify the direct product of polyketide synthase (PKS) encoded by the PKS1 gene. The main compound produced by an A. oryzae transformant was isolated and characterized to be 1,3,6,8-tetrahydroxynaphthalene (T4HN) as its tetraacetate. Since the PKS1 gene was cloned from C. lagenarium to complement the nonmelanizing albino mutant, T4HN was assumed to be an initial biosynthetic intermediate, and thus the product of the PKS reaction, but had not been isolated from the fungus. The production of T4HN by the PKS1 transformant unambiguously identified the gene to encode a PKS of pentaketide T4HN. In addition, tetraketide orsellinic acid and pentaketide isocoumarin were isolated, the latter being derived from a pentaketide monocyclic carboxylic acid, as by-products of the PKS1 PKS reaction. Production of the pentaketide carboxylic acid provided insights into the mechanism for the PKS1 polyketide synthase reaction to form T4HN.  相似文献   

16.
17.
A new tyrosinase-encoding gene (2,204 bp) and the corresponding cDNA (1,857 nucleotides) from the white-rot fungus Pycnoporus sanguineus BRFM49 were cloned. This gene consisted of seven exons and six introns and encoded a predicted protein of 68 kDa, exceeding the mature tyrosinase by 23 kDa. P. sanguineus tyrosinase cDNA was over-expressed in Aspergillus niger, a particularly suitable fungus for heterologous expression of proteins of biotechnological interest, under the control of the glyceraldehyde-3-phosphate-dehydrogenase promoter as strong and constitutive promoter. The glucoamylase preprosequence of A. niger was used to target the secretion. This construction enabled the production of recombinant tyrosinase in the extracellular medium of A. niger. The identity of the purified recombinant protein was confirmed by N-terminal amino acid sequencing. The maturation process was shown to be effective in A. niger, and the recombinant enzyme was fully active, with a molecular mass of 45 kDa. The best transformant obtained, A. niger D15#26-e, produced extracellular tyrosinase activities of 534 and 1,668 U l−1 for monophenolase and diphenolase, respectively, which corresponded to a protein yield of ca. 20 mg l−1.  相似文献   

18.
FI-Carboxymethylcellulase (cmc1; family 12) is one of the endoglucanases of Aspergillus aculeatus and consists of single polypeptide chain of 221 amino acids. The cmc1 gene was expressed in Aspergillus oryzae niaD300 (niaD) under promoter 8142. The plasmid pCMG14 carrying the cmc1 gene at PstI site was used as a source of the gene (920 bp) and Aspergillus oryzae was successfully transformed by the plasmid pNAN-cmc1 (harboring cmc1 gene). The plasmid was integrated in Aspergillus oryzae niaD300 genome at niaD locus and the transformed fungus constitutively produced very high amounts of endoglucanases when grown on glucose, maltose, soluble starch and wheat bran.  相似文献   

19.
Transformation systems for Aspergillus aculeatus has been developed, based on the use of the pyrithiamine resistance gene of Aspergillus oryzae and the orotidine-5′-monophosphate decarboxylase gene (pyrG) of Aspergillus nidulans. An A. aculeatus mutant which can be transformed effectively by the A. nidulans pyrG gene was isolated as a transformation host. This is the first report of transformation of A. aculeatus.  相似文献   

20.
Efficient expression of the dye-decolorizing peroxidase, DyP, from Geotrichum candidum Dec 1 in Aspergillus oryzae M-2-3 was achieved by fusing mature cDNA encoding dyp with the A. oryzae α-amylase promoter (amyB). The activity yield of the purified recombinant DyP (rDyP) was 42-fold compared with that of the purified native DyP from Dec 1. No exogenous heme was necessary for the expression of rDyP in A. oryzae. From the N-terminal amino acid sequence analyses of native DyP and rDyP, the absence of a histidine residue in both DyPs, which was considered to be important for heme binding of DyP, was confirmed. These results suggest that rDyP without a typical heme-binding region produced by A. oryzae exhibits a function similar to that of native DyP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号