首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near-UV irradiation caused the decomposition of hinokitiol in an aqueous solution. During the photochemical reaction, the distinct electron spin resonance signal characteristic of the adduct of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) with the hydroxyl radical was accompanied by small signals corresponding to the adduct of DMPO with the superoxide anion radical. More than 95% of Escherichia coli cells were killed by the incubation with hinokitiol under near-UV irradiation by BLB fluorescent lamps. These results indicated the generation of reactive oxygen species during photochemical reaction of hinokitiol under near-UV irradiation.  相似文献   

2.
The photoreduction of 2′-7′-dichlorofluorescein (DCF) was investigated in buffer solution using direct electron spin resonance (ESR) and the ESR spin-trapping technique. Anaerobic studies of the reaction of DCF in the presence of reducing agents demonstrated that during visible irradiation (λ > 300 nm) 2′-7′-dichlorofluorescein undergoes one-electron reduction to produce a semiquinone-type free radical as demonstrated by direct ESR. Spin-trapping studies of incubations containing DCF, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and either reduced glutathione (GSH) or reduced NADH demonstrate, under irradiation with visible light, the production of the superoxide dismutase-sensitive DMPO/·OOH adduct. In the absence of DMPO, measurements with a Clark-type oxygen electrode show that molecular oxygen is consumed in a light-dependent process. The semiquinone radical of DCF, when formed in an aerobic system, is immediately oxidized by oxygen, which regenerates the dye and forms superoxide.  相似文献   

3.
Metal-catalysed radical oxidation of diacyl-glycerophosphatidylcholines (GPC) with ω-6 acyl polyunsaturated fatty acids (PAPC, palmitoyl-arachidonoyl-glycerophosphatidylcholine and PLPC, palmitoyl-lineloyl-glycerophosphatidylcholine) was studied. Free radical oxidation products were trapped by spin trapping with 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and identified by electrospray mass spectrometry (ES-MS). The spin adducts of oxidised GPC containing one and two oxygen atoms and one and two DMPO molecules were observed as doubly charged ions. Structural characterisation by tandem mass spectrometry (MS/MS) of these ions revealed product ions corresponding to loss of the acyl chains (sn-1-palmitoyl and sn-2-oxidised spin adduct of lineloyl or arachidonoyl), loss of the spin trap (DMPO) and product ions attributed to oxidised sn-2 fatty acid spin adduct (lineloyl and arachidonoyl). Product ions formed by homolytic cleavages near the spin trap and also from 1,4 hydrogen elimination cleavages involving the hydroxy group in the sn-2 fatty acid spin adduct allowed to infer the nature of the radical. Altogether, the presence of GPC hydroxy-alkyl/DMPO and hydroxy-alkoxyl/DMPO spin adducts was proposed.  相似文献   

4.
The objective of this study was to determine the effect of (bi)sulfite (hydrated sulfur dioxide) on human neutrophils and the ability of these immune cells to produce reactive free radicals due to (bi)sulfite oxidation. Myeloperoxidase (MPO) is an abundant heme protein in neutrophils that catalyzes the formation of cytotoxic oxidants implicated in asthma and inflammatory disorders. In this study sulfite (?SO3?) and sulfate (SO4??) anion radicals are characterized with the ESR spin-trapping technique using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in the reaction of (bi)sulfite oxidation by human MPO and human neutrophils via sulfite radical chain reaction chemistry. After treatment with (bi)sulfite, phorbol 12-myristate 13-acetate-stimulated neutrophils produced DMPO–sulfite anion radical, –superoxide, and –hydroxyl radical adducts. The last adduct probably resulted, in part, from the conversion of DMPO–sulfate to DMPO–hydroxyl radical adduct via a nucleophilic substitution reaction of the radical adduct. This anion radical (SO4??) is highly reactive and, presumably, can oxidize target proteins to protein radicals, thereby initiating protein oxidation. Therefore, we propose that the potential toxicity of (bi)sulfite during pulmonary inflammation or lung-associated diseases such as asthma may be related to free radical formation.  相似文献   

5.
《Free radical research》2013,47(6):377-385
Electron spin resonance spectroscopy and the spin trapping technique were used to study the formation of the superoxide radical in pyridine. 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was employed as a trapping agent. Superoxide radical was generated using chemical (potassium superoxide) and photochemical methods with anthralin, benzanthrone, rose bengal, 1,8-dihydroxyanthraquinone and zinc tetraphenylporphyrine as photoactive pigments. Hyperfine coupling (hf) constants for DMPO/O2- were determined to be aN = 12.36 G, aβH= 9.85G, aγH = 1.34 G. The aN and aβH constants are in good agreement with values calculated from a previously determined relationship between hf constants and solvent acceptor number (Reszka et al., (1992) Free Radical Res. Commun., in press). When concentrated hydrogen peroxide was added to DMPO in pyridine a similar EPR spectrum was observed. It is suggested that in this case the DMPO/'O2H adduct is formed by nucleophilic addition of H2O2 to DMPO to give a hydroxylamine, followed by oxidation to the respective nitroxide. The EPR spectrum observed when tetrapropylammonium hydroxide and H2O2 were added to DMPO in pyridine had hf couplings aN = 13.53 G, aβH = 11.38 G, aγH = 0.79 G and it was assigned to a DMPO/'OH adduct. This assignment was based on similarity of this spectrum to the one produced by UV photolysis of hydrogen peroxide and DMPO in aqueous solution and subsequent transfer to pyridine.  相似文献   

6.
Aerobic incubations of the Tritrichomonas foetus hydrogenosomal fraction containing pyruvate, CoA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) gave spectra of two radical adducts. One was a carbon-centered radical adduct of DMPO. This radical was centered at C-3 of pyruvate as determined in experiments using [13C]pyruvate. The other radical detected was identified as the CoA radical adduct of DMPO by comparison with an adduct obtained by incubating CoA with DMPO, H2O2 and horseradish peroxidase. Deletion of CoA led to an increased stability of the carbon-centered radical adduct of DMPO, disappearance of the thiyl radical adduct of DMPO, and appearance of a hydroxyl radical adduct of DMPO. Superoxide dismutase suppressed the appearance of the DMPO-hydroxyl radical adduct but did not have any inhibitory effect on the appearance of the other adducts. Catalase had no significant effect on any of the adducts. Addition of pyruvate to these hydrogenosomal preparations stimulated oxygen consumption. Addition of CoA led to a further increase in the rate of O2 uptake but had no effect in the absence of pyruvate. The formation of two substrate free radicals as intermediates in the generation of acetyl-CoA represents a novel mechanism for this enzymatic reaction and indicates that the pyruvate:ferredoxin oxidoreductase from T. foetus differs significantly from the pyridine nucleotide-dependent pyruvate dehydrogenase complex of other eukaryotic cells in its catalytic mechanism.  相似文献   

7.
It was reported that the electron paramagnetic resonance (EPR) spectrum of 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/lipid alkoxyl radical exhibited a quartet with 1:2:2:1 relative intensity that is identical to that of DMPO/hydroxyl radical (K. M. Schaich and D. C. Borg, 1990, Free Radicals Res. Commun. 9, 267-278). We repeated these EPR experiments using HPLC separation of radical adducts and isotope substitution. We found that the HPLC/EPR chromatogram of the radical adduct with a 1:2:2:1 quartet obtained by the reduction of methyl linoleate hydroperoxide (MLOOH) with Fe2+ exhibited identical retention time to that of the DMPO/OH radical adduct obtained from the Fenton reaction in two different solvent systems. Upon performing the same reaction in 17O-enriched water, the 17O-hyperfine coupling constants due to DMPO/17OH were identified. Ultimately, approximately 80-90% of the total DMPO/OH is derived from water by an iron-dependent nucleophilic addition reaction. Initially, a water-independent mechanism also significantly contributes to DMPO/OH formation. Regardless of its mechanism of formation, the 1:2:2:1 quartet radical adduct of DMPO formed during the reduction of MLOOH by Fe2+ is in fact DMPO/OH.  相似文献   

8.
Free radical production from the reaction of hydrazine and 1-acetyl-2-phenylhydrazine (AcPhHZ) with oxyhaemoglobin and with human red blood cells, has been observed by the electron spin resonance technique of spin trapping. Using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the free radical intermediates detected depended on the hydrazine derivative, oxyhaemoglobin and the oxyhaem/hydrazine derivative concentration ratio.

The reaction of hydrazine with oxyhaemoglobin in the presence of DMPO gave a nitroxide which was identified as a reduced dimer of DMPO. Whereas hydrazine-treated red blood cells, in the presence of DMPO, gave a nitroxide spin adduct which was identified as the hydroxyl radical spin adduct of DMPO, 5,5-dimethyl-1-pyrrolidino-1-oxyl (DMPO-OH).

The reaction of AcPhHZ with oxyhaemoglobin, in the presence of DMPO, gave DMPO-OH, the phenyl radical spin adduct of DMPO, 5,5-dimethyl-2-phenylpyrrolidino-1-oxyl (DMPO-Ph) and an oxidised derivative of DMPO, 5,5-dimethyl-2-pyrrolidone-1-oxyl (DMPOX). The amounts of DMPO-Ph, DMPO-OH and DMPOX observed depended on the 1-acetyl-2-phenyl-hydrazine/oxyhaemoglobin concentration ratio; DMPOX replaced DMPO-OH as the concentration of AcPhHZ was decreased. DMPOX production has been previously associated with the production of highly oxidised haem iron-oxygen intermediates. AcPhHZ treated red blood cells gave DMPO-Ph and DMPO-OH spin adducts in the presence of DMPO.

DMPO had little to no effect on the rate of oxygen consumption by oxyhaemoglobin with hydrazine and AcPhHZ. Moreover, the rate of oxyhaemoglobin oxidation induced by hydrazine, was not decreased by DMPO whereas the rate of oxyhaemoglobin oxidation induced by AcPhHZ was decreased approx. 40% by DMPO. DMPO (10 mM) gave a small decrease in haemolysis and lipid peroxidation induced by 1 mM hydrazine and AcPhHZ in a 1% suspension of red blood cells.  相似文献   


9.
The cysteine thiyl radical has been detected in a variety of biological systems by means of the ESR spectrum of the adduct between the radical and nitrone spin traps. 5,5-Dimethyl-1-pyroline N-oxide (DMPO) is the spin trap of choice in these studies for several reasons. However, we show here that the adduct between the cysteine thiyl radical and phenyl-N-t-butylnitrone (PBN) spin trap can be observed under certain oxidizing conditions where the adduct with DMPO is not detected. This suggests the use of PBN in searching for the thiyl radical under such conditions.  相似文献   

10.
Abstract

We previously reported that irradiation of titanium dioxide (TiO2) in ethanol generates both singlet oxygen (1O2) and superoxide anion (O2·-) as measured by EPR spectroscopy. The present study describes the production of reactive oxygen species upon irradiation of TiO2 in aqueous suspension as determined by EPR spectroscopy using 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TMP) and 5,5- dimethyl-pyrroline-N-oxide (DMPO). Photoproduction of 1O2 by suspended TiO2, detected as 2,2,6,6-tetramethyl-4-piperidone-N-oxyl (4-oxo-TEMPO), was measured in water and deuterium oxide (D2O) in the presence or absence of sodium azide (NaN3) and under air or argon atmospheres. Production of a DMPO-OH adduct was examined in 4-oxo-TMP containing medium in the presence or absence of dimethyl sulfoxide (DMSO). The signal for the DMPO spin adduct of superoxide anion was not observed in aqueous conditions. Kinetic analysis revealed that 1O2 was produced at the surface of irradiated TiO2 in aqueous suspension as was observed in ethanol. Kinetic analysis revealed that the formation of DMPO-OH adduct reflects oxidation of DMPO by 1O2 rather than the trapping of the hydroxyl radical produced by the reaction of photo-exited TiO2 and water. The production of large amounts of 1O2 by TiO2 in aqueous suspension as compared to those in ethanol and possible formation of hydroxyl radical in aqueous suspension but not in alcohol, suggest that irradiation of TiO2 in aqueous environments is biologically more important than that in non-aqueous media.  相似文献   

11.
5,5-Dimethyl-1-pyrroline N-oxide (DMPO) spin trapping in conjunction with antibodies specific for the DMPO nitrone epitope was used on hydrogen peroxide-treated sperm whale and horse heart myoglobins to determine the site of protein nitrone adduct formation. The present study demonstrates that the sperm whale myoglobin tyrosyl radical, formed by hydrogen peroxide-dependent self-peroxidation, can either react with another tyrosyl radical, resulting in a dityrosine cross-linkage, or react with the spin trap DMPO to form a diamagnetic nitrone adduct. The reaction of sperm whale myoglobin with equimolar hydrogen peroxide resulted in the formation of a myoglobin dimer detectable by electrophoresis/protein staining. Addition of DMPO resulted in the trapping of the globin radical, which was detected by Western blot. The location of this adduct was demonstrated to be at tyrosine-103 by MS/MS and site-specific mutagenicity. Interestingly, formation of the myoglobin dimer, which is known to be formed primarily by cross-linkage of tyrosine-151, was inhibited by the addition of DMPO.  相似文献   

12.
The human myoglobin (Mb) sequence is similar to other mammalian Mb sequences, except for a unique cysteine at position 110. Reaction of wild-type recombinant human Mb, the C110A variant of human Mb, or horse heart Mb with H(2)O(2) (protein/H(2)O(2) = 1:1.2 mol/mol) resulted in formation of tryptophan peroxyl (Trp-OO( small middle dot)) and tyrosine phenoxyl radicals as detected by EPR spectroscopy at 77 K. For wild-type human Mb, a second radical (g approximately 2. 036) was detected after decay of Trp-OO( small middle dot) that was not observed for the C110A variant or horse heart Mb. When the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was included in the reaction mixture at protein/DMPO ratios /=1:25 mol/mol, DMPO-tyrosyl radical adducts were detected. Mass spectrometry of wild-type human Mb following reaction with H(2)O(2) demonstrated the formation of a homodimer (mass of 34,107 +/- 5 atomic mass units) sensitive to reducing conditions. The human Mb C110A variant afforded no dimer under identical conditions. Together, these data indicate that reaction of wild-type human Mb and H(2)O(2) differs from the corresponding reaction of other myoglobin species by formation of thiyl radicals that lead to a homodimer through intermolecular disulfide bond formation.  相似文献   

13.
A novel anti-5,5-dimethyl-1-pyrroline N-oxide (DMPO) polyclonal antiserum that specifically recognizes protein radical-derived DMPO nitrone adducts has been developed. In this study, we employed this new approach, which combines the specificity of spin trapping and the sensitivity of antigen-antibody interactions, to investigate protein radical formation from lactoperoxidase (LPO). When LPO reacted with GSH in the presence of DMPO, we detected an LPO radical-derived DMPO nitrone adduct using enzyme-linked immunosorbent assay and Western blotting. The formation of this nitrone adduct depended on the concentrations of GSH, LPO, and DMPO as well as pH values, and GSH could not be replaced by H(2)O(2). The level of this nitrone adduct was decreased significantly by azide, catalase, ascorbate, iodide, thiocyanate, phenol, or nitrite. However, its formation was unaffected by chemical modification of free cysteine, tyrosine, and tryptophan residues on LPO. ESR spectra showed that a glutathiyl radical was formed from the LPO/GSH/DMPO system, but no protein radical adduct could be detected by ESR. Its formation was decreased by azide, catalase, ascorbate, iodide, or thiocyanate, whereas phenol or nitrite increased it. GSH caused marked changes in the spectrum of compound II of LPO, indicating that GSH binds to the heme of compound II, whereas phenol or nitrite prevented these changes and reduced compound II back to the native enzyme. GSH also dose-dependently inhibited the peroxidase activity of LPO as determined by measuring 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) oxidation. Taken together, these results demonstrate that the GSH-dependent LPO radical formation is mediated by the glutathiyl radical, possibly via the reaction of the glutathiyl radical with the heme of compound II to form a heme-centered radical trapped by DMPO.  相似文献   

14.
The formation of the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/.OH adduct of the spin trap DMPO has been reported to occur through nucleophilic addition of water in the presence of aqueous ferric chloride (K. Makino, T. Hagiwara, A. Hagi, M. Nishi, and A. Murakami, 1990, Biochem. Biophys. Res. Commun. 172, 1073-1080). Due to the serious implications of these findings with respect to many spin trapping studies, the suitability of DMPO as a hydroxyl radical spin trap was studied in typical Fenton systems. Using 17O-enriched water, we show conclusively that nucleophilic addition of water occurs at the nitrone carbon (or C-2 position) of DMPO in the presence of either Fe or Cu ions. Furthermore, our results demonstrate that this nucleophilic reaction is a major pathway to the DMPO/.OH adduct, even during the reaction of Fe(II) or Cu(I) with hydrogen peroxide. Primary alkoxyl adducts of DMPO also form in aqueous solution through nucleophilic addition in the presence of both Fe(III) and Cu(II). Attempts to obtain secondary and tertiary alkoxyl adducts by this mechanism were unsuccessful, possibly due to steric effects. When the reaction is carried out in various buffers, however, or in the presence of metal ion chelators, nucleophilic addition to DMPO from Fe(III) is effectively suppressed. Chelators also suppress the reaction with Cu(II). Hence, under most common experimental conditions in biochemical free radical research, nucleophilic addition to DMPO should not be of major concern.  相似文献   

15.
Although free radical formation due to the reaction between red blood cells and organic hydroperoxides in vitro has been well documented, the analogous in vivo ESR spectroscopic evidence for free radical formation has yet to be reported. We successfully employed ESR to detect the formation of the 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)/hemoglobin thiyl free radical adduct in the blood of rats dosed with DMPO and tert-butyl hydroperoxide, cumene hydroperoxide, ethyl hydrogen peroxide, 2-butanone hydroperoxide, 15(S)-hydroperoxy-5,8,11,13-eicosatetraenoic acid, or hydrogen peroxide. We found that pretreating the rats with either buthionine sulfoximine or diethylmaleate prior to dosing with tert-butyl hydroperoxide decreased the concentration of nonprotein thiols within the red blood cells and significantly enhanced the DMPO/hemoglobin thiyl radical adduct concentration. Finally, we found that pretreating rats with the glutathione reductase inhibitor 1,3-bis(2-chloroethyl)-1-nitrosourea prior to dosing with tert-butyl hydroperoxide enhanced the DMPO/hemoglobin thiyl radical adduct concentration and induced the greatest decrease in nonprotein thiol concentration within the red blood cells.  相似文献   

16.
Polyunsaturated fatty acid (PUFA) peroxyl radicals play a crucial role in lipid oxidation. ESR spectroscopy with the spin-trapping technique is one of the most direct methods for radical detection. There are many reports of the detection of PUFA peroxyl radical adducts; however, it has recently been reported that attempted spin trapping of organic peroxyl radicals at room temperature formed only alkoxyl radical adducts in detectable amounts. Therefore, we have reinvestigated spin trapping of the linoleic, arachidonic, and linolenic acid-derived PUFA peroxyl radicals. The slow-flow technique allowed us to obtain well-resolved ESR spectra of PUFA-derived radical adducts in a mixture of soybean lipoxygenase, PUFA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). However, interpretation of the ESR spectra was complicated by the overlapping of the PUFA-derived alkoxyl radical adduct spectra. In order to understand these spectra, PUFA-derived alkoxyl radical adducts were modeled by various alkoxyl radical adducts. For the first time, we synthesized a wide range of DMPO adducts with primary and secondary alkoxyl radicals. It was found that many ESR spectra previously assigned as DMPO/peroxyl radical adducts based on their close similarity to the ESR spectrum of the DMPO/superoxide radical adduct, in conjunction with their insensitivity to superoxide dismutase, are indeed alkoxyl radical adducts. We have reassigned the PUFA alkylperoxyl radical adducts to their corresponding alkoxyl radical adducts. Using hyperfine coupling constants of model DMPO/alkoxyl radical adducts, the computer simulation of DMPO/PUFA alkoxyl radical adducts was performed. It was found that the trapped, oxygen-centered PUFA-derived radical is a secondary, chiral alkoxyl radical. The presence of a chiral carbon atom leads to the formation of two diastereomers of the DMPO/PUFA alkoxyl radical adduct. Therefore, attempted spin trapping of the PUFA peroxyl radical by DMPO at room temperature leads to the formation of the PUFA alkoxyl radical adduct.  相似文献   

17.
Generation of free radicals in the reaction of ozone with blood samples and related salt solutions was investigated in vitro by using ESR spin-trapping technique with DMPO. In the reactions of low levels of ozone, a carbon-centered radical was spin-trapped with DMPO, giving rise to the 6-line ESR signal in both whole blood and blood plasma. In the blood plasma, DMPO-spin adduct of hydroxyl radical (DMPO-OH) was detected together with the spin adduct of carbon-centered radical. The present spin-trapping study demonstrates that, when exposed to ozone, 0.9% NaCl solution in the presence of DMPO gives rise to the formation of DMPO-OH. The addition effects of ethanol, which is a ·OH scavenger, into the NaCl solution reveal that DMPO-OH is produced by the reaction of DMPO with both ·OH and unidentified oxidants originated from the reaction of Cl- and ozone. Based on these observations, we consider that ·OH is generated similarly in the blood plasma exposed to ozone. The ESR study of DMPO-spin adducts in the ozone-exposed aqueous solution of NaOCl indicates that Cl- reacts with ozone to give ClO-. Presumably, further oxidation of ClO- by ozone leads to the formation of ·OH and the unidentified oxidants.  相似文献   

18.
The ability of free radicals to convert l-aminocyclopropane-l-carboxylicacid (ACC) to ethylene under strictly chemical conditions hasbeen investigated using the aerobic xanthine/xanthine oxidasereaction and the Fenton reaction. Ethylene is formed when 1mM ACC is added to either of these reactions. Ethylene productionby the xanthine/xanthine oxidase system can be stimulated byH2O2 and inhibited by both catalase and superoxide dismutase,suggesting that the hydroxyl radical (OH?) formed by the Haber-Weissreaction is reacting with ACC to form ethylene. Ethylene productionfrom ACC by the Fenton reagent, which also produces OH?, showsa strong dependence upon H2O2. Involvement of the OH? radicalwas confirmed by spin-trap studies using 5,5-dimethyl-l-pyrroline-l-oxide(DMPO). Only the hydroxyl adduct of DMPO was detectable in boththe xanthine/xanthine oxidase reaction and the Fenton reaction.When ACC was added to the Fenton reaction, an additional adductof DMPO was detectable, which, on the basis of its hyperfinesplitting constants, can be tentatively identified as the DMPOadduct of a carbon-centered free radical. The data are consistentwith the view that formation of ethylene from ACC entails attackby OH? and the resultant formation of a carbon-centered radical,possibly of ACC. The chemical conversion of ACC to ethyleneis less efficient than that characteristic of senescing tissues,in which the reaction is enzymatically mediated. (Received October 1, 1981; Accepted November 17, 1981)  相似文献   

19.
Several investigators have challenged the widely held view that the hydroxyl radical is the primary oxidant formed in the reaction between the ferrous ion and hydrogen peroxide. In recent studies, using the ESR spin trapping technique, Yamazaki and Piette found that the stoichiometry of oxidant formation in the reaction between Fe2+ and H2O2 often shows a marked deviation from the expected value of 1:1 (I. Yamazaki and L. H. Piette (1990) J. Am. Chem. Soc. 113, 7588-7593). In order to account for these observations, it was suggested that additional oxidizing species are formed, such as the ferryl ion (FeO2+), particularly when iron is present at high concentration and chelated to EDTA.

In this paper it is shown that secondary reactions, involving the redox cycling of iron and the oxidation of the hydroxyl radical adduct of the spin trap 5,5-dimethyl-1-pyrroline-N-oxide(DMPO) by iron, operate under the reaction conditions employed by Yamazaki and Piette. Consequently, the stoichiometry of oxidant formation can be rationalized without the need to envisage the formation of oxidizing species other than the hydroxyl radical. It is also demonstrated that the iron(III) complex of DETAPAC can react directly with DMPO to form the DMPO hydroxyl radical adduct (DMPO/OH) in the absence of hydrogen peroxide. Therefore, to avoid the formation of (DMPO/OH) as an artefact, it is suggested that DETAPAC should not be used as a reagent to inactivate containating adventitious iron in experiments using DMPO.  相似文献   

20.
Galland P  Tölle N 《Planta》2003,217(6):971-982
Light-induced fluorescence changes (LIFCs) were detected in sporangiophores of the blue-light-sensitive fungus Phycomyces blakesleeanus (Burgeff). The LIFCs can be utilized as a spectrophotometric assay for blue-light photoreceptors and for the in vivo characterization of their photochemical primary reactions. Blue-light irradiation of sporangiophores elicited a transient decrease and subsequent regeneration of flavin-like fluorescence emission at 525 nm. The signals recovered in darkness in about 120 min. In contrast to blue light, near-UV (370 nm) caused an increase in the fluorescence emission at 525 nm. Because the LIFCs were altered in a light-insensitive madC mutant with a defective photoreceptor, the fluorescence changes must be associated with early photochemical events of the transduction chain. Action spectra for the fluorescence changes at 525 nm showed major peaks near 470 and 600 nm. Double-pulse experiments involving two consecutive pulses of either blue and near-UV, blue and red, or near-UV and red showed that the responses depended on the sequence in which the different wavelengths were applied. The results indicate a blue-light receptor with intermediates in the near-UV, blue and red spectral regions. We explain the results in the framework of a general model, in which the three redox states of the flavin photoreceptor, the oxidized flavin (Fl), the flavo-semiquinone (FlH·), and the flavo-hydroquinone (FlH2) are each acting as chromophores with their own characteristic photochemical primary reactions. These consist of the photoreduction of the oxidized flavin generating semiquinone, the photoreduction of the semiquinone generating hydroquinone, and the photooxidation of the flavo-hydroquinone regenerating the pool of oxidized flavins. The proposed mechanism represents a photocycle in which two antagonistic photoreceptor forms, Fl and FlH2, determine the pool size of the biological effector molecule, the flavo-semiquinone. The redox changes that are associated with the photocycle are maintained by redox partners, pterins, that function in the near-UV as secondary chromophores.Abbreviations FAD flavin adenine dinucleotide - Fl oxidized flavin - FlH flavo-semiquinone radical - FlH2 flavo-hydroquinone - LIAC light-induced absorbance change - LIFC light-induced fluorescence change - Pt oxidized pterin - PtH2 dihydro-pterin - PtH4 tetrahydro-pterin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号