共查询到20条相似文献,搜索用时 9 毫秒
1.
《Bioscience, biotechnology, and biochemistry》2013,77(10):2240-2242
To understand the molecular mechanism for intramuscular fat deposition, the expression of the obese gene was examined in response to fasting. Food deprivation for 48 h induced a decrease in the level of obese mRNA in pooled adipose tissues (abdominal, perirenal, subcutaneous, intermuscular and intramuscular). The expression of obese mRNA was examined for individual adipose tissue from several fat depots. It was highly expressed in perirenal adipose tissue, but fasting did not affect its expression level in this tissue. Moderate levels were detected in subcutaneous and intermuscular adipose tissues, and a fasting-induced decrease in obese mRNA was apparent in these tissues. The expression level of the obese gene in intramuscular adipose tissue was very low and did not respond to fasting. 相似文献
2.
3.
Arjen H.F. Bakker Francois M.H. van Dielen Jan Willem M. Greve Judit A. Adam Wim A. Buurman 《Obesity (Silver Spring, Md.)》2004,12(3):488-498
Objective: To determine the variation in preadipocyte isolation procedure and to assess the number and function of preadipocytes from subcutaneous and omental adipose tissue of obese individuals. Research Methods and Procedures: The preadipocyte number per gram of adipose tissue in the abdominal‐subcutaneous and abdominal‐omental adipose stores of 27 obese subjects with a BMI of 44 ± 10 kg/m2 and an age of 40 ± 9 years was determined. Results: The assessment of the preadipocyte number was found to be labor intensive and error prone. Our data indicated that the number of stromal vascular cells (SVCs), isolated from the adipose tissue by collagenase digestion, was dependent on the duration of collagenase treatment and the size and the origin of the biopsy. In addition, the fat accumulation and leptin production by differentiated SVCs were dependent on the number of adherent SVCs (aSVCs) in the culture plate and the presence of proteins derived from serum and peroxisome proliferator‐activated receptor ligands. Discussion: Using our standardized isolation and differentiation protocol, we found that the number of SVCs, aSVCs, leptin production, and fat accumulation still varied considerably among individuals. Interestingly, within individuals, the number of SVCs, aSVCs, and the leptin production by differentiating aSVCs from both the subcutaneous and the omental fat depots were associated, whereas fat accumulation was not. In obese to severely obese subjects, differences in BMI and age could not explain differences in SVCs, aSVCs, leptin production, and fat accumulation. 相似文献
4.
5.
6.
C. David Sjstrm A. Camilla Hkangrd Lauren Lissner Lars Sjstrm 《Obesity (Silver Spring, Md.)》1995,3(1):9-22
The purpose of this study was to investigate whether upper body obesity and/or visceral obesity are related to cardiovascular risk factors among severely obese subjects, phenomena that have previously been reported in more heterogeneous body weight distri -buttons. 2450 severely obese men and women aged 37 to 59 years, with a body mass index of 39 ± 4.5 kg/m2 (mean ± SD) were examined cross-sectionally. Eight cardiovascular risk factors were studied in relation. to the following body composition indicators: four trunk and three limb circumferences, along with weight, height and sagittal trunk diameter. From the latter three measurements lean body mass (LBM, i.e., the non-adipose tissue mass) and the masses of subcutaneous and visceral adipose tissue were estimated by using sex-specific prediction equations previously calibrated by computed tomography. Two risk factor patterns could be distinguished: 1. One body compartment- risk factor pattern in which the subcutaneous adipose tissue (AT) mass and, in particular, the visceral AT mass were positively related to most risk factors while the lean body mass was negatively related to some risk factors. 2. One subcutaneous adipose tissue distribution- risk factor pattern in which the neck circumference was positively and the thigh circumference negatively related to several risk factors. It is concluded that lean body mass (LBM), visceral and subcutaneous adipose tissue masses as well as neck and thigh circumferences, used as indices of subcutaneous adipose tissue distribution, are independently related to cardiovascular risk factors in severely obese men and women. 相似文献
7.
脂肪组织的免疫功能 总被引:6,自引:0,他引:6
脂肪组织不仅是能量的储备器官,也是一个重要的内分泌器官.它协助神经系统和其他内分泌器官维持机体的内平衡.近年来,一些研究表明脂肪组织与免疫反应有着密切的联系.人们发现脂肪细胞分泌的瘦素不仅调节机体的能量代谢和控制脂肪的积累,还参与调节单核细胞、巨噬细胞和淋巴细胞的免疫功能,是一种作用广泛的细胞因子.脂肪细胞分泌的其他因子如脂联素也有免疫调节作用.免疫刺激还会作用于淋巴结周围的脂肪组织,引起这些脂肪细胞发生脂解作用.脂肪组织与免疫系统的相互作用,进一步表明生命是由各系统组成的一个有机统一体.随着对这一领域的研究不断深入,可能为某些疾病的治疗提供新的途径. 相似文献
8.
Summary The large amount of absorbed dietary lipid after feeding a high-fat diet is mainly transported as triacylglycerol (TG)-rich
lipoproteins (TRL) in the post-prandial blood and is subsequently distributed to peripheral tissues including adipose and
muscle tissues. An in vivo and an in vitro study were conducted to investigate the possible role of post-prandial TRL after high fat feeding in the regulation of obese
(ob) gene expression. Adult male Wistar rats were fasted for 48 h and re-fed either a fat-free/high-carbohydrate diet or a high-fat
diet for 2, 4, or 8 h and plasma glucose, insulin, TG, and leptin as well as ob mRNA expression in epididymal fat pads were examined. Rats re-fed the high-fat diet had significantly higher plasma TG (p<0.05) and lower plasma leptin and adipose ob mRNA (p<0.05) than those fed the fat-free/high-carbohydrate diet; however, plasma glucose and insulin concentrations were not significantly
different between the two groups. Plasma lipid analysis found large amount of TRL in rats fed with high-fat diet; however,
only very small amount of the TRL was found in rats fed with fat-free/high-carbohydrate diet. We speculated that TRL might
involve in regulation of ob gene expression. To further examine the regulation of TRL on ob mRNA expression, differentiated 3T3-L1 adipocytes were treated with TRL collected from rats fed 5 ml soybean oil by gastric
intubations. TRL down-regulated ob mRNA not only in a dose and time dependent manner but also in the presence of insulin in 3T3-L1 adipocytes. These results
suggest a possible role of TRL in the down-regulation of adipose ob mRNA expression and may account, at least in part, for the previous observations that short-term high fat feeding resulted
in lower plasma leptin. 相似文献
9.
不同启动子对于牛催乳素表达的调控作用 总被引:2,自引:0,他引:2
在细胞水平上比较不同启动子对于牛催乳素(bPRL)表达的调控作用.分别构建了以CMV启动子、牛催乳素基因启动子和山羊β-酪蛋白基因启动子作为调控元件的bPRL真核细胞表达载体,分别命名为pCMV、pPRLP和pP1A3.将3种载体分别转染小鼠垂体瘤细胞和小鼠乳腺上皮细胞,使用RT-PCR和定量RT-PCR分析3种启动子启动bPRL在2种细胞系中的表达效果.pCMV在2种细胞中有效表达bPRL;pPRLP在2种细胞中的表达效果与pCMV接近:pP1A3不在垂体细胞中表达,在乳腺细胞中表达.pPlA3具有乳腺表达特异性;pPRLP能够在垂体和乳腺中高表达,在其他组织的表达特异性有待进一步研究. 相似文献
10.
为了加快基因功能的研究,利用已有的来源于不同组织的cDNA克隆,并通过交换和购买补充了低丰度和染色体覆盖不完全的部分cDNA,研制开发出具有相当代表性、覆盖较完全的高密度cDNA表达型基因芯片,每张芯片上含有384个质控DNA和12 630个cDNA探针,其中包括12 508个Unigene和122个表达序列标签(EST).利用这些芯片,对肥胖患者及正常人内脏脂肪组织基因表达谱进行了初步研究,并发现在肥胖患者内脏脂肪组织差异表达的基因,其中上调的有与凋亡相关的基因、与免疫有关的基因以及与能量代谢有关的基因等,而下调的主要是与脂肪酸及胆固醇合成有关的基因,对这些基因进一步的功能研究将为阐明肥胖发生机制奠定基础. 相似文献
11.
目的:通过构建肥胖合并动脉粥样硬化大鼠模型,评估模型血管旁脂肪组织中趋化因子chemerin基因及蛋白的表达变化.方法:建立肥胖合并动脉粥样硬化大鼠模型;于模型构建不同时期(8周、12周、16周及24周)取胸主动脉旁脂肪组织,应用real-time-PCR检测chemerin的mRNA表达变化;应用免疫组织化学染色的方... 相似文献
12.
Virgile Visentin Danielle Prvot Vronique Durand De Saint Front Nathalie Morin‐Cussac Claire Thalamas Jean Galitzky Philippe Valet Antonio Zorzano Christian Carpn 《Obesity (Silver Spring, Md.)》2004,12(3):547-555
Objective: To explore the activity of monoamine oxidases (MAOs) and semicarbazide‐sensitive amine oxidases (SSAOs) in adipose tissue and blood of lean and moderately obese subjects and to study whether there is a link between these hydrogen peroxide‐generating enzymes and blood markers of oxidative stress. Research Methods and Procedures: Nine obese male subjects (BMI 32.6 ± 0.4 kg/m2) and nine controls (BMI 23.4 ± 0.5) of 24‐ to 40‐year‐old subjects were included in the study. MAO and SSAO activities were measured on microbiopsies of abdominal subcutaneous adipose tissue by quantifying 14C‐tyramine and 14C‐benzylamine oxidation. Levels of soluble SSAO, lipid peroxidation products, and antioxidant agents were measured in plasma, whereas cytoprotective enzymes were determined in blood lysates. Results: The high MAO activity found in adipose tissue was diminished by one‐half in obese subjects (maximum initial velocity of 1.2 vs. 2.3 nmol tyramine oxidized/mg protein/min). There was no change in SSAO activity, either under its adipose tissue‐bound or plasma‐soluble form. Plasma levels of lipid peroxidation products and antioxidant vitamins remained unmodified, as well as erythrocyte antioxidant enzymes, whereas circulating triglycerides, insulin, and leptin were increased. Discussion: Although they already exhibited several signs of endocrino‐metabolic disorders, the obese men did not exhibit the increase in blood markers of oxidative stress or the decrease in antioxidant defenses reported to occur in very obese or diabetic subjects. The reduced MAO and the unchanged SSAO activities found in obesity suggest that these hydrogen peroxide‐generating enzymes expressed in adipocytes are probably not involved in the onset of the oxidative stress found in severe obesity and/or in its complications. 相似文献
13.
Abhishek Gupta Reza Rezvani Marc Lapointe Pegah Poursharifi Picard Marceau Sunita Tiwari Andre Tchernof Katherine Cianflone 《PloS one》2014,9(4)
Background
The central component of the complement system, C3, is associated with obesity, metabolic syndrome and cardiovascular disease however the underlying reasons are unknown. In the present study we evaluated gene expression of C3, the cleavage product C3a/C3adesArg and its cognate receptor C3aR in subcutaneous and omental adipose tissue in women.Methods
Women (n = 140, 21–69 years, BMI 19.5–79 kg/m2) were evaluated for anthropometric and blood parameters, and adipose tissue gene expression.Results
Subjects were separated into groups (n = 34–36) according to obesity: normal/overweight (≤30 kg/m2), obese I (≤45 kg/m2), obese II (≤51 kg/m2), and obese III (≤80 kg/m2). Overall, while omental expression remained unchanged, subcutaneous C3 and C3aR gene expression decreased with increasing adiposity (2-way ANOVA, p<0.01), with a concomitant decrease in SC/OM ratio (p<0.001). In subcutaneous adipose, both C3 and C3aR expression correlated with apoB, and apoA1 and inversely with waist circumference and blood pressure, while C3aR also correlated with glucose (p<0.05–0.0001). While omental C3aR expression did not correlate with any factor, omental C3 correlated with waist circumference, glucose and apoB (all p<0.05). Further, while plasma C3a/C3adesArg increased and adiponectin decreased with increasing BMI, both correlated (C3a negatively and adiponectin positively) with subcutaneous C3 and C3aR expression (p<0.05–0.001) or less).Conclusions
The obesity-induced down-regulation of complement C3 and C3aR which is specific to subcutaneous adipose tissue, coupled to the strong correlations with multiple anthropometric, plasma and adipokine variables support a potential role for complement in immunometabolism. 相似文献14.
利用Oligo功能分类基因芯片检测了瘦肉型的长白猪和脂肪型的太湖猪在1、2、3、4和5月龄间背部皮下脂肪中脂肪沉积代谢和细胞生长调控相关基因的动态表达变化。差异表达分析结果显示1~5月龄的品种间分别有10、6、11、8和19个基因的表达差异倍数大于2倍, 且长白猪有25个基因在不同月龄间的表达差异达显著水平(P<0.05)。其中血管生成素样蛋白4 (ANGPTL4)、组织蛋白酶K (CTSK) 、异柠檬酸脱氢酶2(NADP+) (IDH2)、脂蛋白脂酶 (LPL)、苹果酸酶1 (ME1)、 硬酯酰辅酶A去饱和酶 (SCD)和解藕联蛋白2 (UCP2)这7个基因不仅在同月龄的品种间和品种内的不同月龄间差异表达, 主成分分析结果也显示其表达模式明显偏离其他基因, 提示受到了特殊的调控。聚类分析结果显示1~5月龄间长白猪中正调控脂肪酸代谢基因的表达量逐渐上调, 太湖猪中参与细胞生长调控基因的表达量平缓波动且变化幅度相对较小。另外, 5个差异表达基因的荧光定量RT-PCR验证结果均与芯片结果呈正相关趋势。结果成功筛选出了对猪胴体和肉质性状可能具有重要影响并值得深入研究的一些候选基因, 初步揭示了相关基因的表达变化规律, 为了解生长发育过程中脂肪酸合成与水解的动态平衡过程提供了基础数据。 相似文献
15.
Romy Kursawe Deepak Narayan Anna M.G. Cali Melissa Shaw Bridget Pierpont Gerald I. Shulman Sonia Caprio 《Obesity (Silver Spring, Md.)》2010,18(10):1911-1917
Hepatic steatosis is associated with hypoadiponectinemia. The mechanism(s) resulting in lower serum adiponectin levels in obese adolescents with fatty liver is unknown. In two groups of equally obese adolescents, but discordant for hepatic fat content, we measured adiponectin, leptin, peroxisome proliferator–activated receptor γ 2 (PPARγ2) and tumor necrosis factor‐α (TNFα) gene expression in the abdominal subcutaneous adipose tissue (SAT). Twenty six adolescents with similar degrees of obesity underwent a subcutaneous periumbilical adipose tissue biopsy, in addition to metabolic (oral glucose tolerance test, and hyperinsulinemic—euglycemic clamp), and imaging studies (magnetic resonance imaging (MRI), DEXA). Using quantitative real‐time‐PCR; adiponectin, PPARγ2, TNFα, and leptin mRNA were measured. Based on a hepatic fat content (hepatic fat fraction, HFF) >5.5%, measured by fast MRI, the subjects were divided into low and high HFF group. In addition to the hypoadiponectinemia in the high HFF group, we found that the expression of adiponectin as well as PPARγ2 in the SAT was significantly decreased in this group. No differences were noted for TNFα and leptin plasma or mRNA levels between the groups. An inverse relationship was observed between adiponectin or PPARγ2 expression and hepatic fat content, whereas, adiponectin expression was positively related to PPARγ2 expression. Independent of overall obesity, a reduced expression of adiponectin and PPARγ2 in the abdominal SAT is associated with high liver fat content, as well as with insulin resistance in obese adolescents. 相似文献
16.
17.
利用功能分类基因芯片研究不同品种猪脂肪中特定基因的发育性变化 总被引:2,自引:0,他引:2
利用Oligo功能分类基因芯片检测了瘦肉型的长白猪和脂肪型的太湖猪在1、2、3、4和5月龄间背部皮下脂肪中脂肪沉积代谢和细胞生长调控相关基因的动态表达变化。差异表达分析结果显示1~5月龄的品种间分别有10、6、11、8和19个基因的表达差异倍数大于2倍, 且长白猪有25个基因在不同月龄间的表达差异达显著水平(P<0.05)。其中血管生成素样蛋白4 (ANGPTL4)、组织蛋白酶K (CTSK) 、异柠檬酸脱氢酶2(NADP+) (IDH2)、脂蛋白脂酶 (LPL)、苹果酸酶1 (ME1)、 硬酯酰辅酶A去饱和酶 (SCD)和解藕联蛋白2 (UCP2)这7个基因不仅在同月龄的品种间和品种内的不同月龄间差异表达, 主成分分析结果也显示其表达模式明显偏离其他基因, 提示受到了特殊的调控。聚类分析结果显示1~5月龄间长白猪中正调控脂肪酸代谢基因的表达量逐渐上调, 太湖猪中参与细胞生长调控基因的表达量平缓波动且变化幅度相对较小。另外, 5个差异表达基因的荧光定量RT-PCR验证结果均与芯片结果呈正相关趋势。结果成功筛选出了对猪胴体和肉质性状可能具有重要影响并值得深入研究的一些候选基因, 初步揭示了相关基因的表达变化规律, 为了解生长发育过程中脂肪酸合成与水解的动态平衡过程提供了基础数据。 相似文献
18.
19.
Altered Clock Gene Expression in Obese Visceral Adipose Tissue Is Associated with Metabolic Syndrome
Elaine Vieira Elena G. Ruano Ana Lucia C. Figueroa Gloria Aranda Dulce Momblan Francesc Carmona Ramon Gomis Josep Vidal Felicia A. Hanzu 《PloS one》2014,9(11)
Clock gene expression was associated with different components of metabolic syndrome (MS) in human adipose tissue. However, no study has been done to compare the expression of clock genes in visceral adipose tissue (VAT) from lean and obese subjects and its clinical implications. Therefore, we studied in lean and obese women the endogenous 24 h expression of clock genes in isolated adipocytes and its association with MS components. VAT was obtained from lean (BMI 21–25 kg/m2; n = 21) and morbidly obese women (BMI >40 kg/m2; n = 28). The 24 h pattern of clock genes was analyzed every 6 hours using RT-PCR. Correlation of clinical data was studied by Spearman analysis. The 24 h pattern of clock genes showed that obesity alters the expression of CLOCK, BMAL1, PER1, CRY2 and REV-ERB ALPHA in adipocytes with changes found in CRY2 and REV-ERB ALPHA throughout the 24 h period. The same results were confirmed in VAT and stromal cells (SC) showing an upregulation of CRY2 and REV-ERB ALPHA from obese women. A positive correlation was observed for REV-ERB ALPHA gene expression with BMI and waist circumference in the obese population. Expression of ROR ALPHA was correlated with HDL levels and CLOCK with LDL. Obese subjects with MS exhibited positive correlation in the PER2 gene with LDL cholesterol, whereas REV-ERB ALPHA was correlated with waist circumference. We identified CRY2 and REV-ERB ALPHA as the clock genes upregulated in obesity during the 24 h period and that REV-ERB ALPHA is an important gene associated with MS. 相似文献
20.
根据GenBank已发表的人、小鼠及大鼠GPR43(G protein-coupled receptor 43)基因序列, 设计并合成一对引物, RT-PCR扩增获得猪GPR43基因cDNA, 并利用PCR技术检测该基因在不同猪种、不同发育阶段、不同部位脂肪组织及原代脂肪细胞中的转录表达规律。结果显示, 成功克隆猪GPR43 cDNA片段, 长度为486 bp (GenBank登陆号为EU122439); 同源性分析发现, 猪GPR43与人、小鼠和大鼠同源性达83%以上; GPR43 mRNA表达量在脂肪型猪种上显著高于瘦肉型猪种, 随月龄增长表达量逐渐上升, 且皮下脂肪表达量较内脏脂肪高; 在猪前体脂肪细胞诱导分化过程中, GPR43 mRNA表达量呈时间依赖性升高。揭示GPR43 mRNA表达与猪肥胖程度、年龄、脂肪沉积部位以及脂肪细胞分化程度密切相关。 相似文献