首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When fresh rice leaves producing yeast Schwanniomyces occidentalis phytase were grounded and mixed with the whole extract of seed-based feed for pigs, the release of orthophosphate increased significantly. More specifically, phytate, a major source of phosphorus in the seeds, was hydrolyzed by heterologous phytase. Moreover, when transgenic rice plants were ensiled for up to 12 weeks, no decrease in the phytase activity of the heterologous enzyme was observed. This result strongly suggests that transgenic rice plants producing yeast phytase can be stored as silage without any loss of enzyme activity until usage as a feed additive.  相似文献   

2.
This study was designed to produce yeast (Schwanniomyces occidentalis) phytase in rice with a view to future applications in the animal feed industry. To achieve high-level production, chimeric genes with the secretory signal sequence of the rice chitinase-3 gene were constructed using either the original full-length or N-truncated yeast phytase gene, or a modified gene whose codon usage was changed to be more similar to that of rice, and then introduced into rice (Oryza sativa L.). When the original phytase genes were used, the phytase activity in the leaves of transgenic rice was of the same level as in wild-type plants, whose mean value was 0.039 U/g fresh weight (g-FW) (1 U of activity was defined as 1 micromol P released per min at 37 degrees C). In contrast, the enzyme activity was increased markedly when codon-modified phytase genes were introduced: up to 4.6 U/g-FW of leaves for full-length codon-modified phytase, and 10.6 U/g-FW for truncated codon-modified phytase. A decrease in the optimum temperature and thermal stability was observed in the truncated heterologous enzyme, suggesting that the N-terminal region plays an important role in enzymatic properties. In contrast, the optimum temperature and pH of full-length heterologous phytase were indistinguishable from those of the benchmark yeast phytase, although the heterologous enzyme was less glycosylated. Full-length heterologous phytase in leaf extract showed extreme stability. These results indicate that codon modification, combined with the use of a secretory signal sequence, can be used to produce substantial amounts of yeast phytase, and possibly any phytases from various organisms, in an active and stable form.  相似文献   

3.
The acid phosphatase gene from lupin was expressed in transgenic rice plants under the control of the maize ubiquitin promoter or rice chlorophyll a/b binding protein (Cab) promoter. Transgenic rice leaves exhibited up to an 18-fold increase in phytate-hydrolyzing activity. Based on the phytate-hydrolyzing activity at pH 5.5, more than 85% this activity was retained after heat-treatment at 80 degrees C for 15 min, and the heterologous enzyme in leaf sections and leaf extracts was relatively stable during storage. A distinct increase in released phosphate was observed when the heterologous enzyme was mixed with the feed extract. These results suggest that the heterologous enzyme in rice plants may maintain its desired characteristics as a phytate-hydrolyzing enzyme when added to animal feed.  相似文献   

4.
Transgenic plants offer advantages for biomolecule production because plants can be grown on a large scale and the recombinant macromolecules can be easily harvested and extracted. We introduced an Aspergillus phytase gene into canola (Brassica napus) (line 9412 with low erucic acid and low glucosinolates) by Agrobacterium-mediated transformation. Phytase expression in transgenic plant was enhanced with a synthetic phytase gene according to the Brassica codon usage and an endoplasmic reticulum (ER) retention signal KDEL that confers an ER accumulation of the recombinant phytase. Secretion of the phytase to the extracellular fluid was also established by the use of the tobacco PR-S signal peptide. Phytase accumulation in mature seed accounted for 2.6% of the total soluble proteins. The enzyme can be glycosylated in the seeds of transgenic plants and retain a high stability during storage. These results suggest a commercial feasibility of producing a stable recombinant phytase in canola at a high level for animal feed supplement and for reducing phosphorus eutrophication problems.  相似文献   

5.
Among several yeasts isolated from dried flowers of Woodfordia fruticosa, Pichia anomala produced a high titre of cell-bound phytase. The optimization of fermentation variables led to formulation of media and selection of cultural variables that supported enhanced phytase production. The enzyme productivity was very high in fed batch fermentation in air-lift fermentor as compared to that in stirred tank fermentor. Amelioration in the cell-bound phytase activity was observed when yeast cells were permeabilized with Triton-X-100. The enzyme is thermostable and acid stable with broad substrate specificity, the characteristics that are desirable for enzymes to be used in the animal feed industry. The phytase-encoding gene was cloned and sequenced. The 3D structure of the enzyme was proposed by comparative modeling using phytase of Debaryomyces occidentalis (50% sequence identity) as template. When broiler chicks, and fresh water and marine fishes were fed with the feed supplemented with yeast biomass containing phytase, improvement in growth and phosphorus retention, and decrease in the excretion of phosphorus in the faeces were recorded. The cell-bound phytase of P. anomala could effectively dephytinize wheat flour and soymilk.  相似文献   

6.
Phytate is the main storage form of phosphorus in many plant seeds, but phosphate bound in this form is not available to monogastric animals. Phytase, an enzyme that hydrolyzes phosphate from phytate, has the potential to enhance phosphorus availability in animal diets when engineered in rice seeds as a feed additive. Two genes, derived from a ruminal bacterium Selenomonas ruminantium (SrPf6) and Escherichia coli (appA), encoding highly active phytases were expressed in germinated transgenic rice seeds. Phytase expression was controlled by a germination inducible alpha-amylase gene (alphaAmy8) promoter, and extracellular phytase secretion directed by an betaAmy8 signal peptide sequence. The two phytases were expressed in germinated transgenic rice seeds transiently and in a temporally controlled and tissue-specific manner. No adverse effect on plant development or seed formation was observed. Up to 0.6 and 1.4 U of phytase activity per mg of total extracted cellular proteins were obtained in germinated transgenic rice seeds expressing appA and SrPf6 phytases, respectively, which represent 46-60 times of phytase activities compared to the non-transformant. The appA and SrPf6 phytases produced in germinated transgenic rice seeds had high activity over broad pH ranges of 3.0-5.5 and 2.0-6.0, respectively. Phytase levels and inheritance of transgenes in one highly expressing plant were stable over four generations. Germinated transgenic rice seeds, which produce a highly active recombinant phytase and are rich in hydrolytic enzymes, nutrients and minerals, could potentially be an ideal feed additive for improving the phytate-phosphorus digestibility in monogastric animals.  相似文献   

7.
Transgenic maize plants expressing a fungal phytase gene   总被引:12,自引:0,他引:12  
Maize seeds are the major ingredient of commercial pig and poultry feed. Phosphorus in maize seeds exists predominantly in the form of phytate. Phytate phosphorus is not available to monogastric animals and phosphate supplementation is required for optimal animal growth. Undigested phytate in animal manure is considered a major source of phosphorus pollution to the environment from agricultural production. Microbial phytase produced by fermentation as a feed additive is widely used to manage the nutritional and environmental problems caused by phytate, but the approach is associated with production costs for the enzyme and requirement of special cares in feed processing and diet formulation. An alternative approach would be to produce plant seeds that contain high phytase activities. We have over-expressed Aspergillus niger phyA2 gene in maize seeds using a construct driven by the maize embryo-specific globulin-1 promoter. Low-copy-number transgenic lines with simple integration patterns were identified. Western-blot analysis showed that the maize-expressed phytase protein was smaller than that expressed in yeast, apparently due to different glycosylation. Phytase activity in transgenic maize seeds reached approximately 2,200 units per kg seed, about a 50-fold increase compared to non-transgenic maize seeds. The phytase expression was stable across four generations. The transgenic seeds germinated normally. Our results show that the phytase expression lines can be used for development of new maize hybrids to improve phosphorus availability and reduce the impact of animal production on the environment.  相似文献   

8.
Phytase from Aspergillus niger increases the availability of phosphorus from feed for monogastric animals by releasing phosphate from the substrate phytic acid. A phytase cDNA was constitutively expressed in transgenic tobacco (Nicotiana tabacum) plants. Secretion of the protein to the extracellular fluid was established by use of the signal sequence from the tobacco pathogen-related protein S. The specific phytase activity in isolated extracellular fluid was found to be approximately 90-fold higher than in total leaf extract, showing that the enzyme was secreted. This was confirmed by use of immunolocalization. Despite differences in glycosylation, specific activities of tobacco and Aspergillus phytase were identical. Phytase was found to be biologically active and to accumulate in leaves up to 14.4% of total soluble protein during plant maturation. Comparison of phytase accumulation and relative mRNA levels showed that phytase stably accumulated in transgenic leaves during plant growth.  相似文献   

9.

Phytase is an important enzyme poses great nutritional significance in humans and monogastric animals diets. The phytase production yield using wild sources, including micro-organisms, plants, and animals is sorely low. Thus, recombinant expression of phytase has received increasing interest for achieving production rate. Escherichia coli is the most preferred host for expression of heterologous proteins but overexpression of recombinant phytase in E. coli, met with limited success due to the sequestration of the enzyme into inclusion bodies. In the present study, artificial phytases gene with excellent thermostability and activity were designed by detecting the enzymatic region of the E. coli phytase gene by employing bioinformatics tools. Then, the PCR amplified recombinant gene was expressed in E. coli and the active enzyme was recovered from inclusion bodies. Employing cysteine amino acid in the dialysis buffer succeed to the superior activity of the enzyme with a specific activity of 73.8 U/mg. The optimum temperature and pH for enzyme activity were determined at 60 °C and 4, respectively. The novel recombinant enzyme illustrated perfect thermostability up to 70 °C with maintenance 75% of its activity. The enzyme was stable at pH range of 2–10. Moreover, the effects of ions and chemical compounds on enzyme stability and activity were assessed.

  相似文献   

10.
Phytase is used as a feed additive for degradation of antinutritional phytate, and the enzyme is desired to be highly thermostable for it to withstand feed formulation conditions. A Bacillus sp. MD2 showing phytase activity was isolated, and the phytase encoding gene was cloned and expressed in Escherichia coli. The recombinant phytase exhibited high stability at temperatures up to 100°C. A higher enzyme activity was obtained when the gene expression was done in the presence of calcium chloride. Production of the enzyme by batch- and fed-batch cultivation in a bioreactor was studied. In batch cultivation, maintaining dissolved oxygen at 20–30% saturation and depleting inorganic phosphate below 1 mM prior to induction by IPTG resulted in over 10 U/ml phytase activity. For fed–batch cultivation, glucose concentration was maintained at 2–3 g/l, and the phytase expression was increased to 327 U/ml. Induction using lactose during fed-batch cultivation showed a lag phase of 4 h prior to an increase in the phytase activity to 71 U/ml during the same period as IPTG-induced production. Up to 90% of the total amount of expressed phytase leaked out from the E. coli cells in both IPTG- and lactose-induced fed-batch cultivations.  相似文献   

11.
Transgenic Trifolium subterraneum expressing a phytase gene (phyA) from Aspergillus niger were generated. Five independently transformed lines showed an average 77‐fold increase in exuded phytase activity in comparison with null segregant and wild‐type controls. Unlike other phosphatases, exuded phytase activity was unaffected by P supply, verifying the constitutive expression of phyA. Transgenic T. subterraneum grown in agar with P supplied as phytate, took up 1.3‐ to 3.6‐fold more P than controls and had equivalent P uptake to plants supplied with orthophosphate. This unique phenotype was compromised when the plants were grown in soil. None of the five lines showed increased shoot biomass or total P uptake in an unfertilized, low‐P soil taken from under permanent pasture. With addition of P, one of the five transgenic lines had consistently greater P nutrition compared with control plants. Despite variable growth and P nutrition responses, P uptake per root length was on average greater for transgenic lines. Exudation of phytase by transgenic T. subterraneum allowed utilization of P from phytate in non‐sorbing, sterile laboratory media, but was less effective when plants were grown in soil. Release of extracellular phytase is therefore not the only requirement for the acquisition of P from endogenous soil phytate by plants.  相似文献   

12.
The Aspergillus niger phytase-encoding gene (phyA) has been constitutively expressed in wheat. Transgenic wheat lines were generated by microprojectile bombardment of immature embryos, using the bar-Bialaphos selection system. The bar and the phyA gene expression were controlled by the maize ubiquitin-1 promoter. To ensure secretion and glycosylation of the microbial phytase, an expression cassette was designed (Ubi-SP-Phy) where an -amylase signal peptide sequence was inserted between the promoter and the phytase coding region. A similar cassette was constructed without the signal peptide sequence (Ubi-Phy). Five lines of fertile wheat transformed with the Ubi-SP-Phy were generated and two lines with the Ubi-Phy construct. The inheritance of the phyA gene was monitored through three generations. Western blotting of leaf and seed derived protein revealed the presence of an immunoreacting polypeptide of the size expected for the Aspergillus phytase. Up to 25 days after pollination, the heterologous phytase was exclusively present in the pericarp-seed coat-aleurone fraction. Thereafter, it accumulated in the endosperm in amounts exceeding that found in the seed coat and aleurone. The phyA mRNA and derived protein could at no stage be detected in the embryo. The Ubi-SP-Phy transgenic seeds exhibited up to 4-fold increase of phytase activity while up to 56% increase was found in Ubi-Phy plants. It is concluded that a functional Aspergillus phytase can be produced in significant amounts in wheat grains. This may be of relevance for improving the phytate-phosphorus digestibility when wheat grains are used for non-ruminant animal feed.  相似文献   

13.
A new method for the selection of transgenic rice plants without the use of antibiotics or herbicides has been developed. The phosphomannose isomerase (PMI) gene from Escherichia coli has been cloned and consitutively expressed in japonica rice variety TP 309. The PMI gene was transferred to immature rice embryos by Agrobacterium-mediated transformation, which allowed the selection of transgenic plants with mannose as selective agent. The integration and expression of the transgene was confirmed by Southern and northern blot analysis and the activity of PMI indirectly proved with the chlorophenol red assay. The results of genetic analysis showed that the transgenes were segregated in a Mendelian fashion in the T1 generation. The establishment of this selection system in rice provides an efficient way for producing transgenic plants without using antibiotics or herbicides with a transformation frequency of up to 41%.  相似文献   

14.
15.
Takeuchi Y  Akagi H  Kamasawa N  Osumi M  Honda H 《Planta》2000,211(2):265-274
 NADP-dependent malic enzyme (NADP-ME) is a major decarboxylating enzyme in NADP-ME-type C4 species such as maize and Flaveria. In this study, chloroplastic NADP-ME was transferred to rice (Oryza sativa L.) using a chimeric gene composed of maize NADP-ME cDNA under the control of rice light-harvesting chlorophyll-a/b-binding protein (Cab) promoter. There was a 20- to 70-fold increase in the NADP-ME activity in leaves of transgenic rice compared to that in wild-type rice plants. Immunocytochemical studies by electron microscopy showed that maize NADP-ME was mostly localized in chloroplasts in transgenic rice plants, and that the chloroplasts were agranal without thylakoid stacking. Chlorophyll content and photosystem II activity were inversely correlated with the level of NADP-ME activity. These results suggest that aberrant chloroplasts in transgenic plants may be caused by excessive NADP-ME activity. Based on these results and the known fact that only bundle sheath cells of NADP-ME species, among all three C4 subgroups, have agranal chloroplasts, we postulate that a high level of chloroplastic NADP-ME activity could strongly affect the development of chloroplasts. Received: 27 January 1999 / Accepted: 20 January 2000  相似文献   

16.
Aims: To isolate, clone and express a novel phytase gene (phy) from Bacillus sp. in Escherichia coli; to recover the active enzyme from inclusion bodies; and to characterize the recombinant phytase. Methods and Results: The molecular weight of phytase was estimated as 40 kDa on SDS-polyacrylamide gel electrophoresis. A requirement of Ca2+ ions was found essential both for refolding and activity of the enzyme. Bacillus phytase exhibited a specific activity of 16 U mg−1 protein; it also revealed broad pH and temperature ranges of 5·0 to 8·0 and 25 to 70°C, respectively. The Km value of phytase for hydrolysis of sodium phytate has been determined as 0·392 mmol l−1. The activity of enzyme has been inhibited by EDTA. The enzyme exhibited ample thermostability upon exposure to high temperatures from 75 to 95°C. After 9 h of cultivation of transformed E. coli in the bioreactor, the cell biomass reached 26·81 g wet weight (ww) per l accounting for 4289 U enzyme activity compared with 1·978 g ww per l producing 256 U activity in shake-flask cultures. In silico analysis revealed a β-propeller structure of phytase. Conclusions: This is the first report of its kind on the purification and successful in vitro refolding of Bacillus phytase from the inclusion bodies formed in the transformed E. coli. Significance and Impact of the Study: Efficient and reproducible protocols for cloning, expression, purification and in vitro refolding of Bacillus phytase enzyme from the transformed E. coli have been developed. The novel phytase, with broad pH and temperature range, renaturation ability and substrate specificity, appears promising as an ideal feed supplement. Identification of site between 179th amino acid leucine and 180th amino acid asparagine offers scope for insertion of small peptides/domains for production of chimeric genes without altering enzyme activity.  相似文献   

17.
Secreted phytase activities of yeasts   总被引:11,自引:0,他引:11  
The enzyme phytase dephosphorylates phytin (inositol hexaphosphate), a major phosphate reserve in plants. We found that a large number of yeast species secreted a phytase. Several species were identified as high phytase producers. The yeast enzymes had an optimal activity at pH 4-5 and generally a very high optimal temperature, ranging from 60 degrees C to 80 degrees C.  相似文献   

18.
Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in T1 and T2 transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. T2 transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.  相似文献   

19.
20.
As in other higher eukaryotes, DNA methylation in plants is predominantly found at deoxycytosine residues, while deoxyadenosine residues are not methylated at significant levels. 6mdA methylation has been successfully introduced into yeast and Drosophila via expression of a heterologous methyltransferase, but similar attempts in tobacco had, up until now, proved unsuccessful despite the correct expression of a methyltransferase construct. It was unclear whether this result reflected the failure of heterologous methyltransferases to enter the nucleus, or whether 6mdA methylation, which has been shown to interfere with promoter activity, was toxic for plants. Here we show that 6mdA methylation can be successfully introduced into transgenic tobacco plants via expression of the bacterial dam enzyme. The efficiency of 6mdA methylation was directly proportional to expression levels of the dam construct, and methylation of all GATC sites was observed in a highly expressing line. Increasing expression levels of the enzyme in different plants correlated with increasingly abnormal phenotypes affecting leaf pigmentation, apical dominance, and leaf and floral structure. Whilst introduction of dam -specific methylation does not cause any developmental abnormalities in yeast or Drosophila , our data suggest that methylation of deoxyadenine residues in plants interferes with the expression of genes involved in leaf and floral development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号