首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Three major glyceraldehyde-related advanced glycation end products (AGEs) were formed from a mixture of Nα-acetyllysine, Nα-acetylarginine, and glyceraldehyde. Two of the compounds were MG-H1 and GLAP, as previously reported, and the other compound was identified as Nα-acetyl-Nδ-(5-hydroxy-4,6-dimethyl-pyrimidin-2-yl)-ornithine, argpyrimidine (APN). APN is a modification product of arginine residue, but it did not form from glyceraldehyde with arginine residue. The coexistence of lysine residue was necessary to APN formation.  相似文献   

2.
We isolated and identified the glyceraldehyde-derived advanced glycation product (AGE) formed from glyceraldehyde and N α-acetylarginine. A major product was identified as N α-acetyl-N δ-(5-methyl-imidazolin-4-one-2-yl)-ornithine. The compound has been reported as methylglyoxal-derived AGE, MG-H1. This study suggests that MG-H1 is formed through both glyceraldehyde-related and methylglyoxal-related pathways. There is a possibility that MG-H1 becomes an index of injury to glyceraldehyde and methylglyoxal-related enzymes.  相似文献   

3.
The effect of amino acid composition on the conversion ratio of tryptophan to nicotinamide was investigated. The ratio in the group fed with an amino acid diet simulating rice protein was around 2.5%. This ratio was statistically decreased by the addition of the limiting amino acids, except for tryptophan, and increased by the addition of all the limiting amino acids, including tryptophan. The composition of amino acids proved to greatly affect the conversion ratio.  相似文献   

4.
Protein glycation through Maillard reaction (MR) is a fundamental reaction both in foods and in the human body. The first step of the reaction is the formation of Amadori product (AP) that is converted into intermediate and advanced MR products during reaction development. Although the MR is not an enzymatic reaction, a certain degree of specificity in the glycation site has been observed. In the present study, we have monitored the glycation of different lysine-containing dipeptides to evaluate the influence on the NH(2) reactivity of the neighboring amino acid.Lysine dipeptides were reacted with glucose, galactose, lactose and maltose. The formation and identification of glycated compounds were monitored by mass spectrometry (MALDI-TOF and ESI-MS/MS) and by HPLC of their Fmoc derivatives. MS/MS analysis showed that the glucose APs formed on dipeptides have a characteristic fragmentation pattern: the fragment at [M - 84](+) due to the formation of pyrylium and furylium ion is mainly present in the monoglucosylated form, while the [M - 162](+) and the [M - 324](+) are more evident in the fragmentation pattern of the diglucosylated forms.The nature of the vicinal amino acids strongly affects lysine reactivity towards the different carbohydrates: the presence of hydrophobic residues such as Ile, Leu, Phe strongly increases lysine reactivity. Contrasting results were obtained with basic residues. The Lys-Arg dipeptide was among the most reactive while the Lys-Lys was not.  相似文献   

5.
Glyceraldehyde (200 mM) and Nα-acetyllysine (100 mM) were incubated in 0.2 M sodium phosphate buffer (pH 7.4) at 37°C for a week. A major compound, glyceraldehyde-related Maillard reaction product, was purified from the reaction mixture using reverse phase (ODS)-HPLC. It was identified as 1-(5-acetylamino-5-carboxypentyl)-3-hydroxy-5-hydroxymethyl-pyridinium, named as GLAP (Glyceraldehyde derived Pyridinium compound), using NMR and MS analyses. It was suggested that GLAP as a novel advanced glycation end product (AGE) is one of the key compounds in the glyceraldehyde-related Maillard reaction.  相似文献   

6.
In low-phosphate medium, a butirosin A producer B. vitellinus produced two alkaline phosphatases. These enzymes were fractionated by DEAE-cellulose column chromatography. One phosphatase (Pho I) was eluted with the lower concentration of NaCl compared with the other phosphatase (Pho II). In the wild type strain, Pho I was completely repressed in the high-phosphate medium, but 30% of the fully-derepressed level of Pho II was still produced.

The phosphatase-negative mutant, P-15, that was shown to accumulate butirosin A-6′-N-diphosphate in our previous study, produced only one phosphatase (Pho I) under the low-phosphate condition. Therefore, P-15 was characteristic of the deficiency in Pho II synthesis.

The partially purified preparations of Pho I and II were characterized. Although both enzymes had a similar molecular weight, they could be differentiated in control of synthesis, heat stability, substrate specificity and other properties. Kinetic properties showed that Pho-II was more specific than Pho I to aminoglycoside-phosphates; butirosin A-3′-phosphate, butirosin A-6′-N-diphosphate and 6′-deamino-6′-hydroxybutirosin A-6′-O-diphosphate. The roles of the two phosphatases in butirosin A biosynthesis were discussed.  相似文献   

7.
D-Glucose (0.7 M), glycine (0.3 M), and sodium hydrogencarbonate (0.1 M) were dissolved in aqueous 30% ethanol at pH 8.0 and left at 50 °C for 4 d in a dark room under nitrogen displacement. The resulting blue pigment was isolated and purified from the blue solution by anionic exchange and gel filtration chromatography. This blue pigment, which is designated Blue-G1, was identified as 5-[1,4-bis-carboxymethyl-5-(2,3,4-trihydroxybutyl)-1,4-dihydropyrrolo[3,2-b]pyrrol-2-ylmethylene]-1,4-bis-carboxymethyl-2-(2,3,4-trihydroxybutyl)-4,5-dihydropyrrolo[3,2-b]pyrrol-1-ium. Blue-G1 had two symmetrical pyrrolopyrrole structures with a trihydroxybutyl group. Blue-G1 had a polymerizing activity, suggesting it to be an important Maillard reaction intermediate through the formation of melanoidins.  相似文献   

8.
Metabolism of D-glyceraldehyde in human erythrocytes in comparison with that of glucose and dihydroxyacetone was studied. Both trioses were metabolized to produce L-lactate at rates comparable to that of L-lactate formation from glucose. Almost complete inactivation of glyceraldehyde-3-phosphate dehydrogenase by treatment of cells with iodoacetate resulted in a 95% decrease in L-lactate formation from the ketotriose as well as from glucose, whereas L-lactate formation from the aldotriose was only partially reduced (60%). D-Lactate was produced faster from either the aldotriose or the ketotriose than from glucose, but the ability of the two trioses to produce D-lactate was far lower than that to produce L-lactate. Almost complete inhibition of aldehyde dehydrogenase by disulfiram and of both aldose reductase and aldehyde reductase II by sorbinil, had no effect on L-lactate formation from D-glyceraldehyde. The present study suggests that D-glyceraldehyde is metabolized via two or more pathways including the glycolytic pathway after its phosphorylation by triokinase, and that neither oxidation to D-glyceric acid nor reduction to glycerol is a prerequisite for D-glyceraldehyde metabolism.  相似文献   

9.
Reducing sugars can react with the free amino groups of proteins to form a heterogeneous group of compounds known as advanced glycation endproducts (AGEs) or Maillard reaction products. The objective of this investigation was to monitor the nonenzymatic glycation of DNA nucleosides and to characterize the formation of nucleoside AGEs using capillary electrophoresis (CE), high-performance liquid chromatography (HPLC), UV fluorescence spectroscopy, and mass spectrometry. Deoxyguanosine, deoxyadenosine, deoxythymidine, and deoxycytidine were used as the model nucleosides and were incubated over time with glucose, galactose, or glyceraldehyde. Under increasing concentrations and time, deoxyguanosine exhibited the highest rate of glycation with glyceraldehyde. Deoxyadenosine and deoxycytidine exhibited comparable reactivity with glyceraldehyde and no appreciable reactivity with galactose or glucose. No reactivity was observed between deoxythymidine and the sugars. A combination of CE, HPLC, UV fluorescence spectroscopy, and mass spectrometry provided a convenient method for characterizing nucleoside AGEs and for monitoring the physical factors that influence the formation of sugar adducts of DNA nucleosides.  相似文献   

10.
Solid-phase synthesis of glucose-derived Amadori peptides.   总被引:1,自引:0,他引:1  
Nonenzymatic glycosylation or glycation of amino groups in peptides and proteins by D-glucose is a universal reaction with important implications for the pathogenesis of many diseases including diabetes mellitus. Here a general approach is reported to synthesize site specifically glucose-derived N-glycated peptides. Therefore, model peptides H-AKASASFL-NH(2), H-AKASADFL-NH(2), H-ASKASKFL-NH(2), and H-AKDSASFL-NH(2) were synthesized on solid phase by Fmoc chemistry using Fmoc-Lys(4-methyltrityl)-OH in positions 2 or 3 to be glycated. After completion of the synthesis, the acid labile 4-methyltrityl-group was cleaved with 1% TFA in DCM and the free amino groups were glycated by the Lobry de Bruyn reaction using 2,3:4,5-di-O-isopropylidene-aldehydo-beta-D-arabino-hexos-2-ulo-2,6-pyranose on solid phase. After TFA treatment, the crude peptides were obtained in high yields and purities above 80%. Minor by-products were well separated on reversed-phase HPLC.  相似文献   

11.
Soybean trypsin inhibitor of Kunitz type (STI) was modified by reduced alkylation with NaBH4 and HCHO, and examined for resistance to in vitro digestion from the viewpoint of inhibitory activity and immunoreactivity. Methylated STI was exactly alike in that respect. Hence, STI was in part replaced by its [14C]methyl-labeled specimen and their (17: 3) mixture was used as a proteinous and unabsorbable marker for digestibility experiments. When STI was immunochemically measured in intraluminal leavings in segments of the rat digestive tract, its recovery decreased progressively with the elapse of time. As a result of radioactivity measurement, however, the recovery of [14C]labeled STI proved almost quantitative all together over a period of 7 h postprandial. Concurrently, gastric emptying and intestinal transit of digesta were assessed in terms of intraluminal STI movement. After moving out from the stomach, STI rapidly passed through the upper small intestine with depression of the trypsin activity, and stayed in the lower small intestine for a few or several hours (all that while, the trypsin activity was not depressed so much). A similar pattern was observed for the intraluminal movement of a food additive ‘indigo carmine’ in another experiment. It was assumed from these observations that digesta would also have gone past the upper small bowel irrespective of ingesting either a powdered 20% casein diet or a dumpling-kneaded artificial bait.  相似文献   

12.
Glycation of peptides and proteins is a slow chemical reaction of reducing sugars modifying the amino groups. The first intermediates of this nonenzymatic glycosylation are the Amadori products that can undergo further chemical reactions, finally leading to advanced glycation end products (AGEs). The formation of AGEs was not only linked to aging of tissues and organs in general but also to several diseases such as diabetes mellitus and Alzheimer's disease. Because of the importance of these modifications and their potential use as diagnostic markers, a global postsynthetic approach on solid phase was developed. The peptides were synthesized by Fmoc/(t)Bu-chemistry, with the lysine residue to be modified being protected with the very acid-labile methyltrityl group. Incubation of the peptides with D-glucose in DMF at elevated temperatures resulted in product yields of 35%. Neighboring residues with bulky protecting groups reduced the yields only slightly. The major by-products were the unmodified peptide and an oxidation product. Whereas the unmodified peptide eluted before the glycated peptide, all other by-products eluted later in RP-HPLC, allowing simple purification.  相似文献   

13.
衰老分子生物化学中的羰基应激   总被引:4,自引:0,他引:4  
羰基应激(如:蛋白交联、醛一氨反应)是自由基和美拉德反应的共同结果,也是衰老的重要过程.尽管生物体本身有羰基降解酶和其它羰基解毒系统,然而,即使在健康组织中也还是有大量的有毒羰基化合物存在,特别是不饱和醛酮,如:马龙二醛、4.羟基壬烯醛等.这些不饱和醛酮在生理pH条件下就能与几乎所有的重要生物分子(如:蛋白质、核苷酸等)自发反应,导致一系列与衰老相关的变异.体内的不饱和醛酮还是谷胱甘肽下降、细胞膜损坏、酶功能抑制、免疫混乱、遗传变异、细胞复制受阻等病理变化的主要测定指标和重要原因;同时也是糖基化终产物、老年色素、眼球晶体白内障及胶原组织交联等老化现象的前体物质.因此,不饱和醛酮的毒害可能是机体衰老的核心过程.  相似文献   

14.
One of the hypotheses trying to explain the process of aging is the idea of glycation of proteins. This reaction, also called the Maillard or browning reaction, may explain age-related symptoms such as cataract, atherosclerosis and modification of collagen-containing tissues. Diabetics, which posses elevated blood sugar levels, show signs of accelerated aging exposing similar complications. The Maillard reaction, which occurs on a large scale in vivo, may play a key role in the initiation of these symptoms.  相似文献   

15.
研究了用快速琼脂糖离子交换层析(DEAE—Fast Flow sepharose)结台PEG 4000/Reppal PES双水相体系从黄豆中分离纯化磷酸甘油酸激酶(PGK)及磷酸甘油醛脱氢酶(GAPDH)。控制床层高度(10~20cm),径向放大具有压降低的优点.设计多点进料取代传统的中心管进料,解决了径向流场不均匀的问题。GAPr)H的总收率及纯化倍数分别为58%和144,PGK的总收率及纯化倍数分别为41%和44。工艺成本为2.92美元/ku GPADH,具有一定的实用价值。  相似文献   

16.
Lipid peroxidation (LPO) of polyunsaturated fatty acids (PUFAs) is suspected to be involved in the generation of chronic diseases. A model reaction for LPO is the air oxidation of PUFAs initiated by Fe2+ and ascorbic acid. In the course of such model reactions glycolaldehyde (GLA) was detected as main aldehydic product. Since it is difficult to explain the generation of GLA by oxidation of PUFAs, it was suspected that GLA might be derived by oxidation of ascorbic acid. This assumption was verified by treatment of ascorbic acid with Fe2+.

Produced aldehydic compounds were trapped by addition of pentafluorobenzylhydroxylamine hydrochloride (PFBHA-HCl), trimethylsilylated and finally identified by gas chromatography/mass spectrometry (GC/MS). Oxidation of ascorbic acid with O2 in presence of iron ions produced not only glycolaldehyde (GLA), but also glyceraldehyde (GA), dihydroxyacetone (DA) and formaldehyde. Glyoxal (GO) and malondialdehyde (MDA) were detected as trace compounds.

The yield of the aldehydic compounds was increased by addition of lipid hydroperoxides (LOOH) or H2O2. The buffer influenced the reaction considerably: Iron ions react with Tris buffer by producing dihydroxyace-tone (DA). Since ascorbic acid is present in biological systems and Fe2+ ions are obviously generated by cell damaging processes, the production of GLA and other aldehydic components might add to the damaging effects of LPO.

Glucose suffers also oxidation to short-chain aldehydic compounds in aqueous solution, but this reaction requires addition of equimolar amounts of Fe2+ together with equimolar amounts of H2O2 or 13-hydroperoxy-9-cis-11-trans-octadecadienoic acid (13-HPODE). Therefore this reaction, also influenced by the buffer system, seems to be not of biological relevance.  相似文献   

17.
The rate of reaction of glyceraldehyde with a series of peptides was found to be dependent on their amino acid composition, sequence, and chain length. The presence of a histidine near the NH2-terminal increased the rate of glycation, whereas the presence of a carboxyl group near the reaction site led to a decrease in reaction rate. In general, tripeptides reacted faster than dipeptides, and dipeptides reacted faster than amino acids. Sodium phosphate and 2,3-diphosphoglycerate enhanced the rate of reaction of glyceraldehyde with all the dipeptides tested. Sodium chloride inhibited the reaction in phosphate buffer, but not in HEPES buffer. The NH2-terminal heptapeptide from the -chain of human hemoglobin A (HbA), where histidine is the second residue, reacted with glyceraldehyde faster than the NH2-terminal hexapeptide from the -chain. The glycation of tetrameric human Hb by glyceraldehyde was found to be dependent on the ligation state of the protein since deoxy-HbA reacted about 50% more with glyceraldehyde than did liganded HbA. The enhanced glycation of deoxy HbA was mainly attributable to the more extensive reaction at the NH2-terminal of the -chain. The presence of a histidine adjacent to the NH2-terminal at this site may facilitate the Amadori rearrangement. The glycation of horse Hb in which the second residue is glutamine was not increased under anaerobic conditions.  相似文献   

18.
糖化是一个重要的蛋白质修饰过程,可能影响治疗性蛋白药物(如单克隆抗体药物)的生物活性及分子稳定性。许多研究表明糖化血红蛋白水平升高与心血管疾病及动脉粥样硬化有着密切关系。人体的血浆蛋白,如白蛋白、球蛋白、纤维蛋白和胶原蛋白也可能被糖化,进而形成AGEs,蛋白药物的生产、储存以及药物在体内循环过程中都可能发生糖化反应。综述了治疗性抗体药物糖化的原因、分析方法,以及糖化对抗体药物生物学功能的影响,以期为临床抗体药物的开发、优化及贮存条件研究提供参考。  相似文献   

19.
分别在酸性和碱性条件下通过氧化降解制备了两种黄原胶寡糖XG-H和XG-OH.红外光谱法对黄原胶寡糖的结构进行表征,凝胶渗透色谱法测定黄原胶寡糖的分子量,紫外可见分光光度法测定黄原胶寡糖的丙酮酸和还原糖含量,考察了两种黄原胶寡糖的抗氧化性能和非酶糖基化(NEG)的抑制作用.结果表明,XG-H和XG-OH都表现出一定的抗氧化能力且XG-OH强于XG-H; XG-OH促进5-羟甲基糠醛(非酶糖基化中间产物)的生成,但可显著抑制非酶糖基化荧光末端产物的生成.而XG-H表现出非酶糖基化促进作用.这可能与两种黄原胶寡糖的丙酮酸和还原糖含量有关.  相似文献   

20.
Glycation is an important protein modification that could potentially affect bioactivity and molecular stability, and glycation of therapeutic proteins such as monoclonal antibodies should be well characterized. Glycated protein could undergo further degradation into advance glycation end (AGE) products. Here, we review the root cause of glycation during the manufacturing, storage and in vivo circulation of therapeutic antibodies, and the current analytical methods used to detect and characterize glycation and AGEs, including boronate affinity chromatography, charge-based methods, liquid chromatography-mass spectrometry and colorimetric assay. The biological effects of therapeutic protein glycation and AGEs, which ranged from no affect to loss of activity, are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号