首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A large number of commensal bacteria inhabit the intestinal tract, and interbacterial communication among gut microbiota is thought to occur. In order to analyze symbiotic relationships between probiotic strains and the gut microbiota, a ring with a membrane filter fitted to the bottom was used for in vitro investigations. Test strains comprising probiotic nitto strains (Lactobacillus acidophilus NT and Bifidobacterium longum NT) and type strains (L. acidophilus JCM1132T and B. longum JCM1217T) were obtained from diluted fecal samples using the membrane filter to simulate interbacterial communication. Bifidobacterium spp., Streptococcus pasteurianus, Collinsella aerofaciens, and Clostridium spp. were the most abundant gut bacteria detected before coculture with the test strains. Results of the coculture experiments indicated that the test strains significantly promote the growth of Ruminococcus gnavus, Ruminococcus torques, and Veillonella spp. and inhibit the growth of Sutterella wadsworthensis. Differences in the relative abundances of gut bacterial strains were furthermore observed after coculture of the fecal samples with each test strain. Bifidobacterium spp., which was detected as the dominant strain in the fecal samples, was found to be unaffected by coculture with the test strains. In the present study, interbacterial communication using bacterial metabolites between the test strains and the gut microbiota was demonstrated by the coculture technique. The detailed mechanisms and effects of the complex interbacterial communications that occur among the gut microbiota are, however, still unclear. Further investigation of these relationships by coculture of several fecal samples with probiotic strains is urgently required.  相似文献   

2.
Lactobacillus acidophilus LF221 produced bacteriocin-like activity against different bacteria including some pathogenic and food-spoilage species. Besides some lactic acid bacteria, the following species were inhibited: Bacillus cereus, Clostridium sp., Listeria innocua, Staphylococcus aureus, Streptococcus D. L. acidophilus LF221 produced at least two bacteriocins, acidocin LF221 A and acidocin LF221 B, which were purified by ammonium sulphate precipitation, ion-exchange chromatography, hydrophobic interaction and reverse-phase FPLC. The antibacterial substances were heat-stable, sensitive to proteolytic enzymes (trypsin, pepsin, pronase, proteinase K) and migrated as 3500- to 5000-Da proteins on sodium dodecyl sulphate/polyacrylamide gel electrophoresis. The sequences of 46 amino-terminal amino acid residues of peptide A and 35 of peptide B were determined. Among the residues identified, no modified amino acids were found. No significant homology was found between the amino acid sequences of acidocin LF221 A and other bacteriocins of lactic acid bacteria and 26% homology was found between acidocin LF221 B and brevicin 27. L. acidophilus LF221 may be of interest as a probiotic strain because of its human origin and inhibition of pathogenic bacteria, especially Clostridium difficile. Received: 2 October 1997 / Received revision: 12 January 1998 / Accepted: 13 January 1998  相似文献   

3.
A Collagen-Binding S-Layer Protein in Lactobacillus crispatus   总被引:7,自引:0,他引:7       下载免费PDF全文
Two S-layer-expressing strains, Lactobacillus crispatus JCM 5810 and Lactobacillus acidophilus JCM 1132, were assessed for adherence to proteins of the mammalian extracellular matrix. L. crispatus JCM 5810 adhered efficiently to immobilized type IV and I collagens, laminin, and, with a lower affinity, to type V collagen and fibronectin. Strain JCM 1132 did not exhibit detectable adhesiveness. Within the fibronectin molecule, JCM 5810 recognized the 120-kDa cell-binding fragment of the protein, while no bacterial adhesion to the amino-terminal 30-kDa or the gelatin-binding 40-kDa fragment was detected. JCM 5810 but not JCM 1132 also bound (sup125)I-labelled soluble type IV collagen, and this binding was efficiently inhibited by unlabelled type IV and I collagens and less efficiently by type V collagen, but not by laminin or fibronectin. L. crispatus JCM 5810 but not L. acidophilus JCM 1132 also adhered to Matrigel, a reconstituted basement membrane preparation from mouse sarcoma cells, as well as to the extracellular matrix prepared from human Intestine 407 cells. S-layers from both strains were extracted with 2 M guanidine hydrochloride, separated by electrophoresis, and transferred to nitrocellulose sheets. The S-layer protein from JCM 5810 bound (sup125)I-labelled type IV collagen, whereas no binding was seen with the S-layer protein from JCM 1132. Binding of (sup125)I-collagen IV to the JCM 5810 S-layer protein was effectively inhibited by unlabelled type I and IV collagens but not by type V collagen, laminin, or fibronectin. It was concluded that L. crispatus JCM 5810 has the capacity to adhere to human subintestinal extracellular matrix via a collagen-binding S-layer.  相似文献   

4.
Lacticin, a bacteriocin produced by Lactobacillus delbrueckii subsp. lactis   总被引:2,自引:2,他引:0  
Twenty-one strains of Lactobacillus delbrueckii and L. helveticus were tested for bacteriocin production against each other. Lactobacillus delbrueckii subsp. lactis JCM 1106 and 1107 produced an inhibitory agent active against L. delbrueckii subsp. bulgaricus JCM 1002 and NIAI yB-62, L. delbrueckii subsp. lactis JCM 1248 and L. delbrueckii subsp. delbrueckii JCM 1012. Lactobacillus delbrueckii subsp. lactis JCM 1248 inhibited only the growth of L. delbrueckii subsp. bulgaricus NIAI yB-62. These agents were sensitive to proteolytic enzymes and heating (at 60°C for 10min). These agents were considered to be bacteriocins and designated lacticin A and B.  相似文献   

5.
Crispacin A, a cell-associated bacteriocin produced by Lactobacillus crispatus JCM 2009, was purified from culture broth by ammonium sulfate precipitation, followed by ion exchange and reversed-phase chromatography. Crispacin A was also purified from the cells of L. crispatus JCM 2009 by acid extraction and reversed-phase chromatography. Purified crispacin A was determined to be 5393 Da by mass spectrometry and found not to show sequence homology with other bacteriocins from lactic acid bacteria.  相似文献   

6.
In an effort to demonstrate the potential usefulness of Bacillus subtilis (natto) as a probiotic, we examined the effect of this organism on the growth of three strains of lactobacilli co-cultured aerobically in vitro. Addition of B. subtilis (natto) to the culture medium resulted in an increase in the number of viable cells of all lactobacilli tested. Since B. subtilis (natto) can produce catalase, which has been reported to exhibit a similar growth-promoting effect on lactobacilli, we also examined the effect of bovine catalase on the growth of Lactobacillus reuteri JCM 1112 and L. acidophilus JCM 1132. Both catalase and B. subtilis (natto) enhanced the growth of L. reuteri JCM 1112, whereas B. subtilis (natto) but not catalase enhanced the growth of L. acidophilus JCM 1132. In a medium containing 0.1 mM hydrogen peroxide, its toxic effect on L. reuteri JCM 1112 was abolished by catalase or B. subtilis (natto). In addition, a serine protease from B. licheniformis, subtilisin, improved the growth and viability of L. reuteri JCM 1112 and L. acidophilus JCM 1132 in the absence of hydrogen peroxide. These results indicate that B. subtilis (natto) enhances the growth and (or) viability of lactobacilli, possibly through production of catalase and subtilisin.  相似文献   

7.
AIMS: To screen bacteriocin-producing lactic acid bacteria (LAB) in 52 type and reference strains, which have not previously been studied, with respect to bacteriocins, and to characterize the presence of bacteriocins. METHODS AND RESULTS: Only Enterococcus faecium JCM 5804T showed bacteriocin-like activity. It inhibited the growth of Lactobacillus spp., Enterococcus spp., Clostridium spp., Listeria monocytogenes, and vancomycin resistant Enterococcus (VRE). However, it was not effective against Gram-negative strains, Weisella spp., Leuconostoc spp., Lactococcus spp., or methicillin resistant Staphylococcus aureus (MRSA). The inhibitory activity of Ent. faecium JCM 5804T was inactivated by proteinase K, trypsin, alpha-chymotrypsin, and papain, but not by lysozyme, lipase, catalase, or beta-glucosidase. The inhibitory activity was stable at 100 degrees C for 30 min, and had a pH range from 2 to 10. The molecular weight of the partially purified bacteriocin(s) was approx. 4.5 kDa, according to tricine-sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Polymerase chain reaction and direct sequencing methods identified three different types of bacteriocins produced by Ent. faecium JCM 5804T, enterocin A, enterocin B, and enterocin P-like bacteriocin. CONCLUSION: Enterococcus faecium JCM 5804T produced three different types of bacteriocins, and they inhibited LAB and pathogens. SIGNIFICANCE AND IMPACT OF STUDY: This is the first report of enterocin A, enterocin B, and enterocin P-like bacteriocin, detected in Ent. faecium JCM 5804T among LAB type and reference strains.  相似文献   

8.
Han KS  Kim Y  Choi S  Oh S  Park S  Kim SH  Whang KY 《Biotechnology letters》2005,27(16):1183-1188
A rapid molecular approach was developed for the initial identification of Lactobacillus acidophilus strains which are difficult to identify using a single biochemical test. The 16S–23S rRNA intergenic spacer regions and flanking 23S rRNA genes of 19 strains of lactobacilli were amplified and the nucleotide sequences and restriction site polymorphisms were analyzed. AluI was the most useful of the restriction enzymes analyzed and produced reproducible digestion profiles in the L. helveticus, L. plantarum, and L. casei groups, as well as in L. acidophilus. This restriction fragment length polymorphism method may be useful for the identification of L. acidophilus strains in dairy products.  相似文献   

9.
The taxonomy of the members of the Lactobacillus casei group is complicated because of their phylogenetic similarity and controversial nomenclatural status. In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of ribosomal proteins coded in the S10-spc-alpha operon, termed S10-GERMS, was applied in order to classify 33 sample strains belonging to the L. casei group. A total of 14 types of ribosomal protein genes coded in the operon were first sequenced from four type strains of the L. casei group (L. casei JCM 1134T, L. paracasei subsp. paracasei JCM 8130T, L. paracasei subsp. tolerans JCM 1171T, and L. rhamnosus JCM 1136T) together with L. casei JCM 11302, which is the former type strain of ‘L. zeae’. The theoretical masses of the 14 types of ribosomal proteins used as biomarkers were classified into five types and compiled into a ribosomal protein database. The observed ribosomal proteins of each strain, identified by MALDI-TOF MS, were categorized into types based on their masses, summarized as ribosomal protein profiles, and they were used to construct a phylogenetic tree. The 33 sample strains, together with seven genome-sequenced strains, could be classified into four major clusters, which coincided precisely with the taxa of the (sub)species within the L. casei group. Three “ancient” strains, identified as L. acidophilus and L. casei, were correctly re-identified as L. paracasei subsp. paracasei by S10-GERMS. S10-GERMS would thus appear to be a powerful tool for phylogenetic characterization, with considerable potential for management of culture collections.  相似文献   

10.
A quantitative approach has been proposed to evaluate the competitive inhibition of Escherichia coli and Salmonella typhi by live and heat-inactivated laboratory isolated Lactobacillus sp. on adhesion to monolayer of Caco-2 cells. Three species of Lactobacillus (L. casei, L. acidophilus, L. agilis) isolated from human neonate feces and two commercial probiotic strains (L. casei, L. acidophilus) have been compared for probiotic activity. All lactobacilli were able to attach to the Caco-2 cells, however, the degree of adhesion was bacterial strain-dependent. The adhesion indices of the two commercial probiotic strains were not significantly different from the values obtained for the other two similar fecal strains (p > 0.01). The inhibition of attachment of the pathogenic bacteria by inactivated cells of fecal L. acidophilus was examined and compared to the results of live bacteria. The inhibition pattern was similar for live and heat-inactivated L. acidophilus (p > 0.01). The number of attached pathogenic bacteria to the Caco-2 cells decreased when the number of L. acidophilus increased from 106 to 109 CFU/mL. The heat-inactivated L. acidophilus displayed similar probiotic activity compared to the live bacteria.  相似文献   

11.
While the remarkable health effects of conjugated linoleic acid (CLA) catalyzed from α-linoleic acid by the enzyme linoleate isomerase (LI, EC 5.2.1.5) are well recognized, how widely this biochemical activity is present and the mechanisms of its regulation in lactic acid bacteria are unknown. Although certain strains of Lactobacillus acidophilus can enrich CLA in fermented dairy products, it is unknown if other strains share this capacity. Due to its immense economic importance, this work aimed to investigate genetic aspects of CLA production in L. acidophilus for the first time. The genomic DNA from industrial and type strains of L. acidophilus were subjected to PCR and immunoblot analyses using the putative LI gene of L. reuteri ATCC 55739 as probe. The CLA production ability was estimated by gas chromatography of the biomass extracts. The presumptive LI gene from L. acidophilus ATCC 832 was isolated and sequenced. The resulting sequence shared 71% identity with that of L. reuteri and at least 99% with reported sequences from other L. acidophilus strains. All the strains accumulated detectable levels of CLA and tested positive by PCR and immunoblotting. However, no apparent correlation was observed between the yields and the hybridization patterns. The results suggest that LI activity might be common among L. acidophilus and related species and provide a new tool for screening potential CLA producers.  相似文献   

12.

Based on the ability of the probiotics in the gut microflora modification, they can have the beneficial effects on diseases in the short and/or the long term. In previous study, we revealed that unlike Bifidobacterium bifidum, the amount of Lactobacillus acidophilus remained almost unchanged in mice gut microflora in the long term, indicating more stability of L. acidophilus than B. bifidum which can be used to prevent some incurable diseases such as cancer. Thirty-eight male BALB/c mice were divided into four groups, control, azoxymethane (AOM), L. acidophilus, and B. bifidum probiotics, to evaluate the protective effects of the probiotics on AOM-induced mouse colon cancer. Except for the control group, the rest of the animals were weekly given AOM (15 mg/kg, s.c) in three consecutive weeks. Colon lesion incidence was 74% in the AOM group in comparison with the control (0%) (P < 0.05). The lesions were varied from mild to severe dysplasia and colonic adenocarcinoma. Administration of the probiotics inhibited the incidence of colonic lesions by about 57% in L. acidophilus (P < 0.05) and 27% in B. bifidum (P > 0.05) compared to the AOM group. The serum levels of CEA and CA19-9 tumor markers were significantly decreased in L. acidophilus in comparison with the AOM group (P < 0.05). Moreover, the serum levels of IFN-γ and IL-10 and the number of CD4+ and CD8+ cells were significantly increased in L. acidophilus compared to AOM (P < 0.05). Our study highlighted the more potential effects of L. acidophilus probiotic than B. bifidum on mouse colon cancer.

  相似文献   

13.
The activity of antagonistic substances produced by Pseudomonas aeruginosa and Lactobacillus acidophilus against the planktonic and sessile populations of Staphylococcus aureus strains was demonstrated. The strongest effects were caused by probiotic L. acidophilus strain — bacteriocin-like inhibitory substances (BLIS) positive. However, the S. aureus A3 growth, adhesion and biofilm formation was also limited by cell-free supernatant of L. acidophilus H-1 (BLIS negative). Moreover, competitive direct interactions were observed between staphylococci and the above bacteria, which influenced the formation of dualspecies aggregates on the surface.  相似文献   

14.
We investigated the correlation between the beneficial effect of Lactobacillus acidophilus on gut microbiota composition, metabolic activities, and reducing cow's milk protein allergy. Mice sensitized with β‐lactoglobulin (β‐Lg) were treated with different doses of L. acidophilus KLDS 1.0738 for 4 weeks, starting 1 week before allergen induction. The results showed that intake of L. acidophilus significantly suppressed the hypersensitivity responses, together with increased fecal microbiota diversity and short‐chain fatty acids (SCFAs) concentration (including propionate, butyrate, isobutyrate, and isovalerate) when compared with the allergic group. Moreover, treatment with L. acidophilus induced the expression of SCFAs receptors, G‐protein–coupled receptors 41 (GPR41) and 43 (GPR43), in the spleen and colon of the allergic mice. Further analysis revealed that the GPR41 and GPR43 messenger RNA expression both positively correlated with the serum concentrations of transforming growth factor‐β and IFN‐γ (p < .05), but negatively with the serum concentrations of IL‐17, IL‐4, and IL‐6 in the L. acidophilus–treated group compared with the allergic group (p < .05). These results suggested that L. acidophilus protected against the development of allergic inflammation by improving the intestinal flora, as well as upregulating SCFAs and their receptors GPR41/43.  相似文献   

15.
Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442, isolated from dry fermented sausages, produce bacteriocins antagonistic towards closely related species and pathogens, such as Listeria monocytogenes. The bacteriocins were inactivated by proteolytic enzymes and lipase but not by catalase and lysozyme. They were also heat stable, retaining activity after heating at 100 °C for 60 min. The bacteriocins were stable at pH values ranging from 2.0 to 8.0. Bacteriocin production was observed at low temperatures (10 and 4 °C) and in meat juice. The maximum bacteriocin activity was observed at the end of the exponential growth phase. The bacteriocins were produced in media with initial pH values ranging from 5.0 to 7.5, but not in media with a pH lower than 5.0 (weak bacteriocin activity of the antibacterial compound produced by Ln. mesenteroides L124 was observed at pH 4.5). Both bacteriocins exhibited strong bactericidal activity following cell/bacteriocin contact.  相似文献   

16.
The increasing interest in probiotic lactobacilli implicates the requirement of techniques that allow a rapid and reliable identification of these organisms. In this study, group-specific PCR and RAPD-PCR analyses were used to identify strains of the Lactobacillus casei and Lactobacillus acidophilus groups most commonly used in probiotic yogurts. Group-specific PCR with primers for the L. casei and L. acidophilus groups, as well as L. gasseri/johnsonii, could differentiate between 20 Lactobacillus strains isolated from probiotic yogurts and assign these into the corresponding groups. For identification of these strains to species or strain level, RAPD profiles of the 20 Lactobacillus strains were compared with 11 reference strains of the L. acidophilus and L. casei group. All except one strain could be attributed unambigously to the species L. acidophilus, L. johnsonii, L. crispatus, L. casei, and L. paracasei. DNA reassociation analysis confirmed the classification resulting from the RAPD-PCR.  相似文献   

17.
Summary Lactobacillus acidophilus M92, Lactobacillus plantarum L4 and Enterococcus faecium L3 were previously selected as probiotic strains on the base of in vitro selection criteria. To investigate functional properties of these three probiotic strains in vivo, Swiss albino mice were used as animal model. Survival, competition, adhesion and colonization were monitored in the gastrointestinal tract, as well as the immunomodulating capability of L. acidophilus M92, L. plantarum L4 and E. faecium L3. During the feeding of mice with probiotic strains with daily dose of 2 × 1010 rifampicin-resistant cells, the number of lactic acid bacteria in the faeces increased and reduction of enterobacteria and sulphite-reducing clostridia was observed. Rifampicin-resistant colonies of probiotic strains could be reisolated from the faeces of mice fed with the rifampicin-resistant cells. The similar results were obtained in homogenates of small and large intestine of mice on the first and fourteenth days after feeding with L. acidophilus M92, L. plantarum L4 and E. faecium L3. The adherence of the probiotic strains obtained in vitro correlated with their capability to adhere to mouse ileal epithelial cells in vivo. After oral immunization of mice with viable cells of L. acidophilus M92, L. plantarum L4 and E. faecium L3 with a daily dose of 2 × 1010 cells, the concentrations of serum IgA, IgG and IgM antibodies from all groups of mice were significantly higher in comparison to the control.  相似文献   

18.

The effects of 50–150 gray electron-beam irradiation on the biofilm-formation ability and cell surface hydrophobicity of the commercial strain, Lactobacillus acidophilus DDS®-1, from Lacto-G (a marketed synbiotic formulation) and the putative probiotic, L. rhamnosus Vahe, were evaluated. No significant changes in cell surface hydrophobicity were found after irradiation, while increases in biofilm-formation abilities were documented for both investigated microorganisms 0.22 ± 0.03 vs. 0.149 ± 0.02 (L. rhamnosus Vahe, 150 Gy) and 0.218 ± 0.021 vs. 0.17 ± 0.012 (L. acidophilus DDS®-1, 150 Gy). Given this, the use of electron-beam irradiation (50–100 Gy) for the treatment of L. rhamnosus Vahe and L. acidophilus DDS®-1 cells may be considered in product sterilization, quality improvement, and packaging practices.

  相似文献   

19.
Aims: To identify and characterize novel bacteriocins from Weissella hellenica QU 13. Methods and Results: Weissella hellenica QU 13, isolated from a barrel used to make Japanese pickles, produced two novel bacteriocins termed weissellicin Y and weissellicin M. The primary structures of weissellicins Y and M were determined, and their molecular masses were determined to be 4925·12 and 4968·40 Da, respectively. Analysis of the DNA sequence encoding the bacteriocins revealed that they were synthesized and secreted without N‐terminal extensions such as leader sequences or sec signal peptides. Weissellicin M showed significantly high and characteristic homology with enterocins L50A and L50B, produced by Enterococcus faecium L50, while weissellicin Y showed no homology with any other known bacteriocins. Both bacteriocins showed broad antimicrobial spectra, with especially high antimicrobial activity against species, which contaminate pickles, such as Bacillus coagulans, and weissellicin M showed relatively higher activity than weissellicin Y. Furthermore, the stability of weissellicin M against pH and heat was distinctively higher than that of weissellicin Y. Conclusions: Weissella hellenica QU 13 produced two novel leaderless bacteriocins, weissellicin Y and weissellicin M, and weissellicin M exhibited remarkable potency that could be employed by pickle‐producing industry. Significance and Impact of the Study:  This study is the first report, which represents a complete identification and characterization of novel leaderless bacteriocins from Weissella genus.  相似文献   

20.

Aims

To isolate and characterize bacteriocins produced by predominant species of lactic acid bacteria from faeces of elderly subjects.

Methods and Results

Screening over 70 000 colonies, from faecal samples collected from 266 subjects, using the indicator organisms Lactobacillus bulgaricus LMG 6901 and Listeria innocua DPC 3572, identified 55 antimicrobial‐producing bacteria. Genomic fingerprinting following ApaI digestion revealed 15 distinct strains. The antimicrobial activities associated with 13 of the 15 strains were sensitive to protease treatment. The predominant antimicrobial‐producing species were identified as Lactobacillus salivarius, Lactobacillus gasseri, Lactobacillus acidophilus, Lactobacillus crispatus and Enterococcus spp. A number of previously characterized bacteriocins, including ABP‐118 and salivaricin B (from Lact. salivarius), enterocin B (Enterococcus faecium), lactacin B (Lact. acidophilus), gassericin T and a variant of gassericin A (Lact. gasseri), were identified. Interestingly, two antimicrobial‐producing species, not generally associated with intestinally derived microorganisms were also isolated: Lactococcus lactis producing nisin Z and Streptococcus mutans producing mutacin II.

Conclusion

These data suggest that bacteriocin production by intestinal isolates against our chosen targets under the screening conditions used was not frequent (0·08%).

Significance and Impact of the Study

The results presented are important due to growing evidence indicating bacteriocin production as a potential probiotic trait by virtue of strain dominance and/or pathogen inhibition in the mammalian intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号