首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we found that an intraperitoneally administered chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP), and MMK-1, a selective agonist of formyl peptide receptor-like 1 (FPRL1) receptor, the low affinity subtype of the fMLP receptor, prevented the alopecia in neonatal rats induced by the anticancer agent etoposide. The anti-alopecia effect of fMLP was not inhibited at all by Boc-FLFLF, a selective antagonist of formylpeptide receptor (FPR), which is the high affinity subtype of the fMLP receptor, but it was partly inhibited by Trp-Arg-Trp-Trp-Trp-Trp-NH(2) (WRW(4)), an antagonist of FPRL1 receptor. On the other hand, the anti-alopecia effect of MMK-1 was completely abolished by WRW(4). The anti-alopecia effects of fMLP and MMK-1 were also inhibited by Lys-D-Pro-Thr (K(D)PT) and pyrrolidine dithiocarbamate, which are inhibitors of interleukin-1 (IL-1) and nuclear factor-kappaB (NF-kappaB) respectively. Hence, we suggest that the anti-alopecia mechanisms of intraperitoneally administered fMLP and MMK-1 include activation of NF-kappaB via IL-1 release downstream of the FPRL1 receptor homolog in rats.  相似文献   

2.
Tsuruki T  Yoshikawa M 《Peptides》2006,27(4):820-825
Oral administration for 6 days of 100 mg/kg MMK-1, an agonist peptide selective for the FPRL1 receptor, suppressed alopecia induced by the anticancer drug etoposide in neonatal rats. The anti-alopecia effect of orally administered MMK-1 was not inhibited by pyrilamine or cimetidine, antagonists for histamine H1 and H2 receptors, respectively, which blocked the anti-alopecia effect of intraperitoneally administered MMK-1 at a dose of 10 mg/kg for 4 days. However, the anti-alopecia effect of orally administered MMK-1 was inhibited by indomethacin, an inhibitor of cyclooxygenase (COX), or AH-23848B, an antagonist of the EP4 receptor for prostaglandin (PG) E2, suggesting involvement of PGE2 release and the EP4 receptor in the oral MMK-1 anti-alopecia mechanism. The anti-alopecia effect of orally administered MMK-1 was also blocked by an inhibitor of nuclear factor-kappaB (NF-kappaB), pyrrolidine dithiocarbamate, suggesting that the oral anti-alopecia effect of MMK-1 may be mediated by activation of NF-kappaB. These results suggest that MMK-1 bound to FPRL1 receptor might suppress etoposide-induced apoptosis of hair follicle cells and alopecia by way of PGE2 release and NF-kappaB activation.  相似文献   

3.
Bacteria have developed mechanisms to escape the first line of host defense, which is constituted by the recruitment of phagocytes to the sites of bacterial invasion. We previously described the chemotaxis inhibitory protein of Staphylococcus aureus, a protein that blocks the activation of neutrophils via the formyl peptide receptor (FPR) and C5aR. We now describe a new protein from S. aureus that impaired the neutrophil responses to FPR-like1 (FPRL1) agonists. FPRL1 inhibitory protein (FLIPr) inhibited the calcium mobilization in neutrophils stimulated with MMK-1, WKYMVM, prion-protein fragment PrP(106-126), and amyloid beta(1-42). Stimulation with low concentrations of fMLP was partly inhibited. Directed migration was also completely prevented toward MMK-1 and partly toward fMLP. Fluorescence-labeled FLIPr efficiently bound to neutrophils, monocytes, B cells, and NK cells. HEK293 cells transfected with human C5aR, FPR, FPRL1, and FPRL2 clearly showed that FLIPr directly bound to FPRL1 and, at higher concentrations, also to FPR but not to C5aR and FPRL2. FLIPr can reveal unknown inflammatory ligands crucial during S. aureus infections. As a novel described FPRL1 antagonist, it might lead to the development of therapeutic agents in FPRL1-mediated inflammatory components of diseases such as systemic amyloidosis, Alzheimer's, and prion disease.  相似文献   

4.
Several epoxyquinoids interfere with NF-κB signaling by targeting IKKβ or NF-κB. We report that epoxyquinol B (EPQB), classified as an epoxyquiniod, inhibits NF-κB signaling through inhibition of the TAK1 complex, a factor upstream of IKKβ and NF-κB. cDNA microarray analysis revealed that EPQB decreased TNF-α-induced expression of NF-κB target genes. EPQB covalently bound to a recombinant TAK1-TAB1 fusion protein in vitro, and inhibited its kinase activity. Furthermore, in vitro/in situ treatment with EPQB resulted in a ladder-like hypershift of TAK1 protein bands. We reported recently that EPQB crosslinks proteins via cysteine residues by opening its two epoxides, and our current results suggest that EPQB inhibits NF-κB signaling by crosslinking TAK1 itself or TAK1 through other proteins.  相似文献   

5.
Dysregulation of immune responses to environmental antigens by the intestine leads to the chronic inflammatory disease, inflammatory bowel disease (IBD). Recent studies have thus sought to identify a dietary component that can inhibit lipopolysaccharide (LPS)-induced nuclear factor-kappa beta (NF-κB) signaling to ameliorate IBD. This study assessed if the lactic acid bacteria (LAB) from kimchi, suppresses the expression of tumor necrosis factor-alpha (TNF-α) in peritoneal macrophages induced by LPS. Leuconostoc lactis EJ-1, an isolate from LAB, reduced the expression of interleukin-6 (IL-6) and IL-1β in peritoneal macrophages induced by LPS. The study further tested whether EJ-1 alleviates colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. TNBS significantly increased myeloperoxidase (MPO) expression, macroscopic colitis scores, and colon shortening. Oral administration of L. lactis EJ-1 resulted in an inhibited in TNBS-induced loss in body weight, colon shortening, MPO activity, and NF-κB and inducible nitric oxide synthase expression; it also led to a marked reduction in cyclooxygenase-2 expression. L. lactis EJ-1 also inhibited the TNBS-induced expression of TNF-α, IL-1β, and IL-6; however, it induced the expression of IL-10. The M2 macrophage markers arginase I, IL-10, and CD206 were elevated by EJ-1. Collectively, these results suggest that EJ-1 inhibits the NF-κB signaling and polarizes M1- to M2-macrophage transition, which help in ameliorating colitis.  相似文献   

6.
Salidroside, a bioactive constituent isolated from Rhodiola rosea, has been reported to have anti-inflammatory effects. However, the effects of salidroside on interleukin (IL)-1β-stimulated osteoarthritis (OA) chondrocytes remain to be elucidated. Thus, this study aimed to evaluate the anti-inflammatory effects of salidroside on IL-1β-stimulated human OA chondrocytes and explore its underlying mechanisms. Our results showed that salidroside significantly inhibited the production of nitric oxide and prostaglandin E-2, as well as suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 in IL-1β-stimulated chondrocytes ( P < .05). In addition, salidroside also suppressed IL-1β-induced matrix metalloproteinases production in human OA chondrocytes ( P < .05). Furthermore, pretreatment with salidroside prevented IL-1β-induced NF-κB activation in OA chondrocytes ( P < .05). In conclusion, the current study demonstrated that salidroside inhibited the IL-1β-induced inflammatory response in OA chondrocytes via inhibition of NF-κB activation.  相似文献   

7.
Background: Human β-defensin 2 (hBD2) gene expression is dependent on nuclear factor kappa B (NF-κB) activity. We have previously demonstrated that electrolytically generated acid functional water (FW) induces the expression of hBD2 in the human oral squamous cell carcinoma (OSCC) cell line Ca9-22. However, the induction was not dependent on NF-κB activity; in fact, FW inhibited NF-κB activity. Therefore, we hypothesized that FW might reduce spontaneous interleukin 8 (IL-8) secretion by Ca9-22 cells, which is heavily dependent on NF-κB activity. This study aimed at demonstrating the inhibitory effect of FW on NF-κB activity. Methods: Ca9-22 cells were incubated with FW, and spontaneous IL-8 secretion was observed by enzyme-linked immunosorbent assay. Luciferase assay was performed using the 5′-untranslated region of the IL-8 gene. The steps of NF-κB activation blocked by FW were evaluated by localization of the NF-κB subunits p65 and p50 by immunofluorescence staining. Western blotting was further performed to confirm the changes in NF-κB subunit localization. Results: The Ca9-22 cells spontaneously secreted IL-8, which was rapidly and drastically inhibited by FW treatment. The luciferase assay demonstrated the inhibitory action of FW, which was diminished by deletion of the NF-κB binding site from this construct. FW treatment altered the distribution of both the p65 and p50 subunits. P65, which was localized in the nucleus during the resting state, moved to the cytoplasm after FW treatment, whereas, p50, localized in the cytoplasm during the resting state, moved to the nucleus subsequent to FW treatment. Conclusions: The results from this study indicate that FW might inhibit spontaneous IL-8 secretion by redistribution of the NF-κB subunits within the cells.  相似文献   

8.
Adiponectin and interleukin 10 (IL-10) are adipokines that are predominantly secreted by differentiated adipocytes and are involved in energy homeostasis, insulin sensitivity, and the anti-inflammatory response. These two adipokines are reduced in obese subjects, which favors increased activation of nuclear factor kappa B (NF-κB) and leads to elevation of pro-inflammatory adipokines. However, the effects of adiponectin and IL-10 on NF-κB DNA binding activity (NF-κBp50 and NF-κBp65) and proteins involved with the toll-like receptor (TLR-2 and TLR-4) pathway, such as MYD88 and TRAF6 expression, in lipopolysaccharide-treated 3T3-L1 adipocytes are unknown. Stimulation of lipopolysaccharide-treated 3T3-L1 adipocytes for 24 h elevated IL-6 levels; activated the NF-κB pathway cascade; increased protein expression of IL-6R, TLR-4, MYD88, and TRAF6; and increased the nuclear activity of NF-κB (p50 and p65) DNA binding. Adiponectin and IL-10 inhibited the elevation of IL-6 levels and activated NF-κB (p50 and p65) DNA binding. Taken together, the present results provide evidence that adiponectin and IL-10 have an important role in the anti-inflammatory response in adipocytes. In addition, inhibition of NF-κB signaling pathways may be an excellent strategy for the treatment of inflammation in obese individuals.  相似文献   

9.
10.
11.
12.
As we had found previously that thapsigargin, an endomembrane Ca2+-ATPase inhibitor, induces production of intracellular platelet-activating factor (PAF) [Br. J. Pharmacol. 116 (1995) 2141], we decided to investigate the possible roles of intracellular PAF in nuclear factor (NF)-κB activation of thapsigargin-stimulated rat peritoneal macrophages. When rat peritoneal macrophages were stimulated with thapsigargin, the level of inhibitory protein of NF-κB-α (IκB-α) was decreased and the nuclear translocation of NF-κB was increased. The thapsigargin-induced activation of NF-κB was inhibited by the PAF synthesis inhibitor SK&F 98625 and the PAF antagonist E6123. Structurally unrelated PAF antagonists such as E5880 and L-652,731 also inhibited the thapsigargin-induced activation of NF-κB. Lipopolysaccharide (LPS)-induced activation of NF-κB was also suppressed by these drugs. In a culture of rat peritoneal macrophages, exogenously added PAF did not induce degradation of IκB-α. These findings suggest that the intracellular PAF produced by the stimulation with thapsigargin or LPS is involved in activation of the NF-κB pathway.  相似文献   

13.
Osteoclasts (OCs) are multinuclear giant cells responsible for bone resorption, and an excessive bone resorption by OCs plays an important role in osteoporosis. Commonly used drugs for the treatment of osteoporosis have severe side effects. As such, identification of alternative treatments is essential. Garcinol, a polyisoprenylated benzophenone extracted from the fruit of Garcinia indica, has shown a strong antitumor effect through the nuclear factor-κB (NF-κB) and mitogen-associated protein kinases (MAPK) signaling pathways. However, the role of garcinol in the osteoclastogenesis is still unclear. Here, we demonstrated that garcinol can inhibit the receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis, osteoclastogenesis-related gene expression, the f-actin ring, and resorption pit formation. In addition, garcinol abrogated RANKL-induced osteoclastogenesis by attenuating the degradation of the MAPK, NF-κB, and PI3K-AKT signaling pathway as well as downstream factors c-jun, c-fos, and NFATC1. In vivo, suppression of osteoclastogenesis by garcinol was evidenced by marked inhibition of lipopolysaccharide-induced bone resorption. In conclusion, our data demonstrated that garcinol inhibited the RANKL-induced osteoclastogenesis by suppressing the MAPK, NF-κB, and PI3K-AKT signaling pathways and thus has potential as a novel therapeutic option for osteolytic bone diseases.  相似文献   

14.
15.
16.
Evidence indicates that inflammatory response is significant during the physiological process of human parturition; however, the specific signaling pathway that triggers inflammation is undefined. Toll-like receptors (TLRs) are key upstream gatekeepers that control inflammatory activation before preterm delivery. Our previous study showed that TLR4 expression was significantly increased in human pregnancy tissue during preterm and term labor. Therefore, we explore whether TLR4 plays a role in term labor by initiating inflammatory responses, therefore promoting uterine activation. The results showed that expression of TLR4, interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), CC chemokine ligand 2 (CCL-2), and uterine contraction-associated proteins (CAPs) was upregulated in the human and mice term labor (TL) group compared with the not-in-labor (TNL) group, and the TLR4 level positively correlated with CAP expression. In pregnant TLR4-knockout (TLR4−/−) mice, gestation length was extended by 8 hr compared with the wild-type group, and the expression of IL-1β, IL-6, TNF-α, CCL-2, and CAPs was decreased in TLR4−/− mice. Furthermore, nuclear factor-κB (NF-κB) and P38MAPK activation is involved in the initiation of labor but was inhibited in TLR4−/− mice. In uterine smooth muscle cells, the expression of inflammatory cytokines and CAPs decreased when the NF-κB and P38MAPK pathway was inhibited. Our data suggest that TLR4 is a key factor in regulating the inflammatory response that drives uterine activation and delivery initiation via activating the NF-κB/P38MAPK pathway.  相似文献   

17.
Previously, we found that orally administered soymetide-4 (MITL), an immunostimulating peptide derived from soybean beta-conglycinin alpha' subunit, suppressed alopecia induced by the anti-cancer drug etoposide in neonatal rats. Soymetide-4 has weak affinity for N-formyl-methionyl-leucyl-phenylalanine (fMLP) receptor. fMLP showed an anti-alopecia effect after intraperitoneal administration, though it was inactive after oral administration. Anti-alopecia effect of fMLP was blocked by pyrilamine or cimetidine, antagonists for histamine H1 or H2 receptor, respectively. However, the anti-alopecia effect of soymetide-4 was not inhibited by the histamine antagonists but by indomethacin, an inhibitor of cyclooxygenase (COX), or AH-23848B, an antagonist of the EP4 receptor for PGE2. Anti-alopecia effect of soymetide-4 was also blocked by pyrrolidine dithiocarbamate, an inhibitor of nuclear factor-kappaB (NF-kappaB). These results suggest that PGE2, which is produced after activation of COX by soymetide-4, might suppress apoptosis of hair matrix cells and etoposide-induced alopecia by activating NF-kappaB.  相似文献   

18.
Dynorphin 1-17 (DYN 1-17) is biotransformed rapidly to a range of fragments in rodent inflamed tissue with dynorphin 3-14 (DYN 3-14) being the most stable and prevalent. DYN 1-17 has been shown previously to be involved in the regulation of inflammatory response following tissue injury, in which the biotransformation fragments of DYN 1-17 may possess similar features. This study investigated the effects of DYN 3-14 on lipopolysaccharide (LPS)-induced nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of pro-inflammatory cytokines interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in differentiated THP-1 cells. Treatment with DYN 3-14 (10 nM) resulted in 35% inhibition of the LPS-induced nuclear translocation of NF-κB/p65. Furthermore, DYN 3-14 modulated both IL-1β and TNF-α release; inhibiting IL-1β and paradoxically augmenting TNF-α release in a concentration-independent manner. A number of opioids have been implicated in the modulation of the toll-like receptor 4 (TLR4), highlighting the complexity of their immunomodulatory effects. To determine whether DYN 3-14 modulates TLR4, HEK-Blue™hTLR4 cells were stimulated with LPS in the presence of DYN 3-14. DYN 3-14 (10 μM) inhibited TLR4 activation in a concentration-dependent fashion by suppressing the LPS signals around 300-fold lower than LPS-RS, a potent TLR4 antagonist. These findings indicate that DYN 3-14 is a potential TLR4 antagonist that alters cellular signaling in response to LPS and cytokine release, implicating a role for biotransformed endogenous opioid peptides in immunomodulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号