首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen peroxide is a well-known mediator of apoptosis. As a mechanism for H2O2-induced apoptosis, both a mitochondrial Cyt.c-dependent pathway and a lysosome-mediated pathway have been suggested. However, the relative roles of and the relation between these two pathways in H2O2-induced apoptosis remain to be discovered. In this study, to find the relative roles of the lysosomal and mitochondrial pathways, the effects of E-64-d, a cell-permeable inhibitor of lysosomal cysteine proteases, on apoptosis caused by H2O2 in HL-60 cells were investigated. It was found that the concentration of H2O2 strongly affected the inhibitory effect of E-64-d on the apoptosis in HL-60 cells: dose-dependent inhibition (up to 40%) of both DNA fragmentation and caspase-3 activation was observed when a high concentration of H2O2 (50 μM) was used to induce apoptosis, but no inhibitory effect was detected when a low concentration (10 μM) was used. Consistent with these observations, apparent lysosomal destabilization was observed only with 50 μM H2O2. The release of mitochondrial Cyt.c, in contrast, was observed at both 10 μM and 50 μM. These results indicated that the mitochondrial Cyt.c-mediated pathway predominates in the H2O2-induced apoptosis in HL-60 cells and the lysosomal mediated pathway is partially involved when high concentrations of H2O2 are used to induce apoptosis.  相似文献   

2.
The mutual binding inhibition of tetrodotoxin and saxitoxin to their binding protein from the plasma of Fugu pardalis was investigated by HPLC. The values for the half inhibitory concentration of tetrodotoxin (1.6 μM) binding to this protein (1.2 μM) for saxitoxin, and of saxitoxin (0.47 μM) binding to that (0.30 μM) for tetrodotoxin were 0.35±0.057 μM and 81±16 μM (n=2), respectively.  相似文献   

3.
This study was designed to investigate whether genistein may ameliorate oxidative stress and nuclear factor κB (NFκB) activation in the lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cell line. Treatment of RAW 264.7 cells with genistein significantly reduced lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in a dose-dependent manner with an IC50 of 69.4 μM. Genistein at 50 μM and 100 μM concentrations reduced thiobarbituric acid-reactive substances (TBARS) accumulation, increasing the GSH level and antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase. The specific DNA-binding activities of nuclear factor κB (NFκB) on nuclear extracts from 50 μM and 100 μM genistein treatments were significanly suppressed. These results suggest that genistein has mild antioxidant activity to suppress intracellular oxidative stress and NFκB activation.  相似文献   

4.
We produced a monoclonal antibody (mAb) against N G,N G-dimethyl-L-arginine (asymmetric dimethylarginine: ADMA), an endogenous competitive inhibitor of nitric oxide synthase (NOS), and developed an enzyme-linked immunosorbent assay (ELISA). The competitive ELISA method using the mAb determined 5 nM–100 nM ADMA, and ADMA levels in human plasma and urine were found to be 0.78 μM and 51.3 μmol/g of creatinine respectively.  相似文献   

5.
The substrate specificity of sugar beet α-giucosidase was investigated. The enzyme showed a relatively wide specificity upon various substrates, having α-1,2-, α-1,3-, α-1,4- and α-l,6-glucosidic linkages.

The relative hydrolysis velocity for maltose (G2), nigerose (N), kojibiose (K), isomaltose (I), panose (P), phenyl-a-maltoside (?M) and soluble starch (SS) was estimated to be 100:130: 10.7: 22.6: 54.6: 55.8: 120 in this order; that for malto-triose (G3), -tetraose (G4), -pentaose (G5), -hexaose (G6), -heptaose (G7), -octaose (G8), amyloses (G13) and (G17), 91: 91: 91: 91: 80: 57: 75: 73. The Km values for N, K, I, P, and SS were 16.7 mM, 1.25 mM, 10.8 mM, 8.00 mM, 4.12 mM and 1.90 mg/ml, respectively; that for G2, G3, G4, G5, G6, G7, G8, G13 and G17 were 20.0 mM, 3.67 mM, 2.34 mM, 0,64 mM, 0.42 mM, 0.32 mM, 0.23 mM, 0.36 mM and 0.26 mM, respectively.

The enzyme, though showed higher affinity and activity toward soluble starch than toward maltose, was considered essentially to be an α-glucosidase.  相似文献   

6.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38–39 kDa, as judged by SDS–PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5±4.5 μM and uronic acids, such as D-galacturonic acid (Km=3.79±0.5 mM) and D-glucuronic acid (Km=4.67±0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP+. The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H2O2, suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

7.
Acidithiobacillus ferrooxidans AP19-3, ATCC 23270, and MON-1 are mercury-sensitive, moderately mercury-resistant, and highly mercury-resistant strains respectively. It is known that 2,3,5,6-tetramethyl-p-phenylendiamine (TMPD) and reduced cytochrome c are used as electron donors specific for cytochrome c oxidase. Resting cells of strain MON-1 had TMPD oxidase activity and volatilized metal mercury with TMPD as an electron donor. Cytochrome c oxidase purified from strain MON-1 reduced mercuric ions to metalic mercury with reduced mammalian cytochrome c as well as TMPD. These mercury volatilization activities with reduced cytochrome c and TMPD were completely inhibited by 1 mM NaCN. These results indicate that cytochrome c oxidase is involved in mercury reduction in A. ferrooxidans cells. The cytochrome c oxidase activities of strains AP19-3 and ATCC 23270 were completely inhibited by 1 μM and 5 μM of mercuric chloride respectively. In contrast, the activity of strain MON-1 was inhibited 33% by 5 μM, and 70% by 10 μM of mercuric chloride, suggesting that the levels of mercury resistance in A. ferrooxidans strains correspond well with the levels of mercury resistance of cytochrome c oxidase.  相似文献   

8.
In the course of screening for antioxidative carotenoids from bacteria, we isolated and identified a novel carotenoid, OH-chlorobactene glucoside hexadecanoate (4), and rare carotenoids, OH-chlorobactene glucoside (1), OH-γ-carotene glucoside (2) and OH-4-keto-γ-carotene glucoside hexadecanoate (3) from Rhodococcus sp. CIP. The singlet oxygen (1O2) quenching model of these carotenoids showed potent antioxidative activities IC50 14.6 μM for OH-chlorobactene glucoside hexadecanoate (4), 6.5 μM for OH-chlorobactene glucoside (1), 9.9 μM for OH-γ-carotene glucoside (2) and 7.3 μM for OH-4-keto-γ-carotene glucoside hexadecanoate (3).  相似文献   

9.
《Autophagy》2013,9(11):1557-1576
L-arginine (L-Arg) deficiency results in decreased T-cell proliferation and impaired T-cell function. Here we have found that L-Arg depletion inhibited expression of different membrane antigens, including CD247 (CD3ζ), and led to an ER stress response, as well as cell cycle arrest at G0/G1 in both human Jurkat and peripheral blood mitogen-activated T cells, without undergoing apoptosis. By genetic and biochemical approaches, we found that L-Arg depletion also induced autophagy. Deprivation of L-Arg induced EIF2S1 (eIF2α), MAPK8 (JNK), BCL2 (Bcl-2) phosphorylation, and displacement of BECN1 (Beclin 1) binding to BCL2, leading to autophagosome formation. Silencing of ERN1 (IRE1α) prevented the induction of autophagy as well as MAPK8 activation, BCL2 phosphorylation and XBP1 splicing, whereas led T lymphocytes to apoptosis under L-Arg starvation, suggesting that the ERN1-MAPK8 pathway plays a major role in the activation of autophagy following L-Arg depletion. Autophagy was required for survival of T lymphocytes in the absence of L-Arg, and resulted in a reversible process. Replenishment of L-Arg made T lymphocytes to regain the normal cell cycle profile and proliferate, whereas autophagy was inhibited. Inhibition of autophagy by ERN1, BECN1 and ATG7 silencing, or by pharmacological inhibitors, promoted cell death of T lymphocytes incubated in the absence of L-Arg. Our data indicate for the first time that depletion of L-Arg in T lymphocytes leads to a reversible response that preserves T lymphocytes through ER stress and autophagy, while remaining arrested at G0/G1. Our data also show that the L-Arg depletion-induced ER stress response could lead to apoptosis when autophagy is blocked.  相似文献   

10.
Delipidated cell walls from Aureobasidium pullulans were fractionated systematically.

The cell surface heteropolysaccharide contains D-mannose, D-galactose, D-glucose, and D-glucuronic acid (ratio, 8.5:3.9:1.0:1.0). It consists of a backbone of (1→6)-α-linked D-mannose residues, some of which are substituted at O-3 with single or β-(1→6)-linked D-galactofuranosyl side chains, some terminated with a D-glucuronic acid residue, and also with single residues of D-glucopyranose, D-galactopyranose, and D-mannopyranose.

This glucurono-gluco-galactomannan interacted with antiserum against Elsinoe leucospila, which also reacted with its galactomannan, indicating that both polysaccharides contain a common epitope, i.e., at least terminal β-galactofuranosyl groups and also possibly internal β-(1→6)-linked galactofuranose residues.

It was further separated by DEAE-Sephacel column chromatography to gluco-galactomannan and glucurono-gluco-galactomannan.

The alkali-extracted β-D-glucan was purified by DEAE-cellulose chromatography to afford two antitumor-active (1→3)-β-D-glucans. One of the glucans (Mr, 1–2 × 105) was a O-6-branched (1→3)-β-D-glucan with a single β-D-glucosyl residue, d.b., 1/7, and the other (Mr, 3.5–4.5 × 105) had similar branched structure, but having d.b., 1/5. Side chains of both glucans contain small proportions of β-(1→6)-and β-(1→4)-D-glucosidic linkages.  相似文献   

11.
The cepA putative gene encoding a cellobiose phosphorylase of Thermotoga maritima MSB8 was cloned, expressed in Escherichia coli BL21-codonplus-RIL and characterized in detail. The maximal enzyme activity was observed at pH 6.2 and 80°C. The energy of activation was 74 kJ/mol. The enzyme was stable for 30 min at 70°C in the pH range of 6-8. The enzyme phosphorolyzed cellobiose in an random-ordered bi bi mechanism with the random binding of cellobiose and phosphate followed by the ordered release of D-glucose and α-D-glucose-1-phosphate. The K m for cellobiose and phosphate were 0.29 and 0.15 mM respectively, and the k cat was 5.4 s-1. In the synthetic reaction, D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, and 6-deoxy-D-glucose were found to act as glucosyl acceptors. Methyl-β-D-glucoside also acted as a substrate for the enzyme and is reported here for the first time as a substrate for cellobiose phosphorylases. D-Xylose had the highest (40 s-1) k cat followed by 6-deoxy-D-glucose (17 s-1) and 2-deoxy-D-glucose (16 s-1). The natural substrate, D-glucose with the k cat of 8.0 s-1 had the highest (1.1×104 M-1 s-1) k cat/K m compared with other glucosyl acceptors. D-Glucose, a substrate of cellobiose phosphorylase, acted as a competitive inhibitor of the other substrate, α-D-glucose-1-phosphate, at higher concentrations.  相似文献   

12.
We identified two compounds that demonstrated 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity from cultures of Lactobacillus plantarum. Spectroscopic analyses proved these compounds to be L-3-(4-hydroxyphenyl) lactic acid (HPLA) and L-indole-3-lactic acid (ILA). The respective EC50 values for HPLA and ILA were 36.6 ± 4.3 mM and 13.4 ± 1.0 mM.  相似文献   

13.
D-Galactosyl-β1→4-L-rhamnose (GalRha) was produced enzymatically from 1.1 M sucrose and 1.0 M L-rhamnose by the concomitant actions of four enzymes (sucrose phosphorylase, UDP-glucose-hexose 1-phosphate uridylyltransferase, UDP-glucose 4-epimerase, and D-galactosyl-β1→4-L-rhamnose phosphorylase) in the presence of 1.0 mM UDP-glucose and 30 mM inorganic phosphate. The accumulation of GalRha in 1 liter of the reaction mixture reached 230 g (the reaction yield was 71% from L-rhamnose). Sucrose and fructose in the reaction mixture were removed by yeast treatment, but isolation of GalRha by crystallization after yeast treatment was unsuccessful. Finally, 49 g of GalRha was isolated from part of the reaction mixture with yeast treatment by gel-filtration chromatography.  相似文献   

14.
An NADP-specific glutamate dehydrogenase [L-glutamate: NADP+ oxidoreductase (deaminating), EC 1.4.1.4] from alkaliphilic Bacillus sp. KSM-635 was purified 5840-fold to homogeneity by a several-step procedure involving Red-Toyopearl affinity chromatography. The native protein, with an isoelectric point of pH 4.87, had a molecular mass of approximately 315 kDa consisting of six identical summits each with a molecular mass of 52 kDa. The pH optima for the aminating and deaminating reactions were 7.5 and 8.5, respectively. The optimum temperature was around 60°C for both. The purified enzyme had a specific activity of 416units/mg protein for the aminating reaction, being over 20-fold greater than that for deaminating reaction, at the respective pH optima and at 30°C. The enzyme was specific for NADPH (Km 44 μM), 2-oxoglutarate (Km 3.13 mM), NADP+ (Km 29 μM), and L-glutamate (Km 6.06 mM). The Km for NH4Cl was 5.96 mM. The enzyme could be stored without appreciable loss of enzyme activity at 5°C for half a year in phosphate buffer (pH 7.0) containing 2 mM 2-mercaptoethanol, although the enzyme activity was abolished within 20 h by freezing at ?20°C.  相似文献   

15.
Isolated hepatocytes are known to maintain their physiological functions for over a week when cultured on Matrigel, artificially reconstituted from basement membrane components. Although this culture technique has been frequently used in research on hepatocyte functions, there has been a limitation on its application for small scale experiments due to some technical problems. By using micro-culture plates with 96 round-bottom wells, we succeeded in coating the wells uniformly with Matrigel. When the cultured hepatocytes were treated with either 10 mM, 15 mM, or 20 mM of acetaminophen or 1 mM, 10 mM, or 20 mM of D-galactosamine, the viability of the hepatocytes became 91.1%, 75.3%, 64.7%, and 79.0%, 43.8%, 26.2% of the non-treated control at 48 hours, respectively. Fractionated extracts of Glycyrrhiza glabra L. and Schisandra chinensis Baillon inhibited the action of acetaminophen or D-galactosamine in this model. From these results, we concluded that the microculture system presented here is capable of maintaining the in vivo characteristics of hepatocytes and is suitable for the screening of hepatoprotective substances.  相似文献   

16.
Partial acid hydrolysis of Saccharomyces cerevisiae mannan gave 2-O-α-d-Manp-d-Man (1), 3-O-α-d-Manp-d-Man (2), 6-O-α-d-Manp-d-Man (3), O-α-d Manp-(1→2)O-α-d-Manp-(1→2)-d-Man (4), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-d-Man (5), O-α-d Manp-(1→6)-6-O-α-d-Manp-(1→6)-d-Man (6), O-α-d Manp-(1→2)-O-α-d-Manp-(1→2)-6-O-α-d-Manp-(1→6)-d-Man (7), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-O-α-d-Manp-(1→6)-d-Man (8), and O-α-d-Manp-(1→6)-O-[α-d-Manp-(1→2)]-O-α-d-Manp-(1→6)-d-Man (9).  相似文献   

17.
The theanine (THE: γ-glutamylethylamide) content and the growth rate of cultured cells of tea (Camellia sinensis L.) were increased greatly to 22.3%, in dry wt. with a medium containing 60 mM nitrate and 25 mM ethylamine as a nitrogen source. The optimum concentrations of nitrate, Mg2+, and K+ for the growth and formation of THE in suspension cells were 40mM, 3mM, and 104mM, respectively. The yield of THE accumulated in the cultured cells with the medium modified for THE formation was increased greatly due to a great increase of the growth rate.  相似文献   

18.
A major laccase isozyme (Lac 1) was isolated from the culture fluid of an edible basidiomycetous mushroom, Grifola frondosa. Lac 1 was revealed to be a monomeric protein with a molecular mass of 71 kDa. The N-terminal amino acid sequence of Lac 1 was highly similar to those of laccases of some other white-rot basidiomycetes. Lac 1 showed the typical absorption spectrum of a copper-containing enzyme. The enzyme was stable in a wide pH range (4.0 to 10.0), and lost no activity up to 60 °C for 60 min. The optimal pH of the enzyme activity varied among substrates. The K m values of Lac 1 toward 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), 2,6-dimethoxyphenol, guaiacol, catechol, and 3,4-dihydroxy-L-phenylalanine were 0.0137 mM, 0.608 mM, 0.531 mM, 2.51 mM, and 0.149 mM respectively. Lac 1 activity was remarkably inhibited by the chloride ion, in a reversible manner. Lac 1 activity was also inhibited by thiol compounds.  相似文献   

19.
The α-methylserine aldolase gene from Variovorax paradoxus strains AJ110406, NBRC15149, and NBRC15150 was cloned and expressed in Escherichia coli. Formaldehyde release activity from α-methyl-L-serine was detected in the cell-free extract of E.coli expressing the gene from three strains. The recombinant enzyme from V. paradoxus NBRC15150 was purified. The V max and K m of the enzyme for the formaldehyde release reaction from α-methyl-L-serine were 1.89 μmol min?1 mg?1 and 1.2 mM respectively. The enzyme was also capable of catalyzing the synthesis of α-methyl-L-serine and α-ethyl-L-serine from L-alanine and L-2-aminobutyric acid respectively, accompanied by hydroxymethyl transfer from formaldehyde. The purified enzyme also catalyzed alanine racemization. It contained 1 mole of pyridoxal 5′-phosphate per mol of the enzyme subunit, and exhibited a specific spectral peak at 429 nm. With L-alanine and L-2-aminobutyric acid as substrates, the specific peak, assumed to be a result of the formation of a quinonoid intermediate, increased at 498 nm and 500 nm respectively.  相似文献   

20.
3-Thiophenecarboxylic acid (1) showed strong growth-inhibitory activity toward the following plants but not Glycine max Merrill; Brassica campestris subsp. rapa Hook. fil. et Anders, Sesamum indicum L., Lactuca sativa L. var. longifolia Lam, Echinochloa utilis Ohwi et Yabuno and Allium tuberosum Rottler. Compound 1 strongly inhibited the growth of roots of S. indicum and L. sativa even at the low concentration of 5.0 × 10?5 m. The growth-inhibitory activity of 1-related compounds (2–6) on S. indicum was also studied. Among the compounds, 3-thiopheneacetic acid (6) showed the strongest inhibitory activity, but 3-thiophenecarboxaldehyde (2), 3-thiophenemethanol (3), and 3-thiophenecarboxamide (5) showed no activity. The radicles of plants treated with these active compounds showed negative geotropism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号