首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zoospores of phytopathogenic fungi accumulate at the potential infection sites of host roots by chemotaxis. The aggregated spores then adhere, encyst, germinate, and finally penetrate into the root tissues to initiate infection. Some of the host-specific attractants have already been identified. The host-specific attractants also induce cell differentiation of certain zoospores under laboratory conditions. This indicates that a signal released from the roots of the host plant guides the pest propagules for orientation and prepares them for establishing a host-pathogen relationship by necessary physiological changes. Some non-host plant secondary metabolites were found to markedly regulate behavior and viability of zoospores, suggesting that non-host compounds may also play a role in protecting the non-host plants from the attack of zoosporic fungi. We hypothesized that zoospores perceive the host signal(s) by specific G-protein-coupled receptors and translate it into responses by way of the phosphoinositide-Ca2+ signaling cascade. The details of the signal transduction mechanism in fungal zoospores are yet to be discovered. In this report, we review the signaling and communications between phytopathogenic fungal zoospores and host and non-host plants with special reference to Aphanomyces cochlioides.  相似文献   

2.
Common mycorrhizal networks (CMNs) that connect individual plants of the same or different species together play important roles in nutrient and signal transportation, and plant community organization. However, about 10% of land plants are non-mycorrhizal species with roots that do not form any well-recognized types of mycorrhizas; and each mycorrhizal fungus can only colonize a limited number of plant species, resulting in numerous non-host plants that could not establish typical mycorrhizal symbiosis with a specific mycorrhizal fungus. If and how non-mycorrhizal or non-host plants are able to involve in CMNs remains unclear. Here we summarize studies focusing on mycorrhizal-mediated host and non-host plant interaction. Evidence has showed that some host-supported both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) hyphae can access to non-host plant roots without forming typical mycorrhizal structures, while such non-typical mycorrhizal colonization often inhibits the growth but enhances the induced system resistance of non-host plants. Meanwhile, the host growth is also differentially affected, depending on plant and fungi species. Molecular analyses suggested that the AMF colonization to non-hosts is different from pathogenic and endophytic fungi colonization, and the hyphae in non-host roots may be alive and have some unknown functions. Thus we propose that non-host plants are also important CMNs players. Using non-mycorrhizal model species Arabidopsis, tripartite culture system and new technologies such as nanoscale secondary ion mass spectrometry and multi-omics, to study nutrient and signal transportation between host and non-host plants via CMNs may provide new insights into the mechanisms underlying benefits of intercropping and agro-forestry systems, as well as plant community establishment and stability.  相似文献   

3.
Colonisation of plant roots by endophytic fungi may confer benefits to the host such as protection against abiotic or biotic stresses or plant growth promotion. The exploitation of these properties is of great relevance at an applied level, either to increase yields of agricultural crops or in reforestation activities. Fusarium equiseti is a naturally occurring endophyte in vegetation under stress in Mediterranean ecosystems. Pochonia chlamydosporia is a nematode egg-parasitic fungus with a worldwide distribution. Both fungi have the capacity to colonise roots of non-host plants endophytically and to protect them against phytopathogenic fungi under laboratory conditions. The aim of this study was to evaluate the root population dynamics of these fungi under non-axenic practical conditions. Both fungal species were inoculated into barley roots. Their presence in roots and effects on plant growth and incidence of disease caused by the pathogen Gaeumannomyces graminis var. tritici were monitored periodically. Both fungi colonised barley roots endophytically over the duration of the experiment and competed with other existing fungal root colonisers. Furthermore, colonisation of roots by P. chlamydosporia promoted plant growth. Although a clear suppressive effect on disease could not be detected, F. equiseti isolates reduced the mean root lesion length caused by the pathogen. Results of this work suggest that both F. equiseti and P. chlamydosporia are long-term root endophytes that confer beneficial effects to the host plant.  相似文献   

4.
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens.  相似文献   

5.
Mycorrhizal fungi provide direct and functional interconnection of soil environment with their host plant roots. Colonization of non-host plants have occasionally been described, but its intensity and functional significance in complex plant communities remain generally unknown. Here, the abundance of ectomycorrhizal fungus Tuber aestivum was measured in the roots of host and non-host (non-ectomycorrhizal) plants in a naturally occurring T. aestivum colony using a quantitative PCR approach. The roots of non-host plant species found inside the brûlé area were extensively colonized by T. aestivum mycelium, although the levels were significantly lower than those found in host Carpinus betulus roots. However, fungal biomass concentration in the non-host roots was one to two orders of magnitude higher than that in the surrounding soil. This indicates existence of an important biotic interaction between T. aestivum mycelium and the non-host, mostly herbaceous plants. Roots, either host or non-host, thus probably constitute hot spots of T. aestivum activity in the soil ecosystem with as yet uncovered functional significance.  相似文献   

6.
Arbuscular mycorrhiza (AM) is established by the entry of AM fungi into the host plant roots and the formation of symbiotic structures called arbuscules. The host plant supplies photosynthetic products to the AM fungi, which in return provide phosphate and other minerals to the host through the arbuscules. Both partners gain great advantages from this symbiotic interaction, and both regulate AM development. Our recent work revealed that gibberellic acids (GAs) are required for AM development in the legume Lotus japonicus. GA signaling interact with symbiosis signaling pathways, directing AM fungal colonization in host roots. Expression analysis showed that genes for GA biosynthesis and metabolism were induced in host roots around AM fungal hyphae, suggesting that the GA signaling changes with both location and time during AM development. The fluctuating GA concentrations sometimes positively and sometimes negatively affect the expression of AM-induced genes that regulate AM fungal infection and colonization.  相似文献   

7.
Most terrestrial plants interact with diverse clades of mycorrhizal and root-endophytic fungi in their roots. Through belowground plant–fungal interactions, dominant plants can benefit by interacting with host-specific mutualistic fungi and proliferate in a community based on positive plant–mutualistic fungal feedback. On the other hand, subordinate plant species may persist in the community by sharing other sets (functional groups) of fungal symbionts with each other. Therefore, revealing how diverse clades of root-associated fungi are differentially hosted by dominant and subordinate plant species is essential for understanding plant community structure and dynamics. Based on 454-pyrosequencing, we determined the community composition of root-associated fungi on 36 co-occurring plant species in an oak-dominated forest in northern Japan and statistically evaluated the host preference phenotypes of diverse mycorrhizal and root-endophytic fungi. An analysis of 278 fungal taxa indicated that an ectomycorrhizal basidiomycete fungus in the genus Lactarius and a possibly endophytic ascomycete fungus in the order Helotiales significantly favored the dominant oak (Quercus) species. In contrast, arbuscular mycorrhizal fungi were generally shared among subordinate plant species. Although fungi with host preferences contributed to the compartmentalization of belowground plant–fungal associations, diverse clades of ectomycorrhizal fungi and possible root endophytes were associated not only with the dominant Quercus but also with the remaining plant species. Our findings suggest that dominant-ectomycorrhizal and subordinate plant species can host different subsets of root-associated fungi, and diverse clades of generalist fungi can counterbalance the compartmentalization of plant–fungal associations. Such insights into the overall structure of belowground plant–fungal associations will help us understand the mechanisms that facilitate the coexistence of plant species in natural communities.  相似文献   

8.
Meeting a non-host: the behaviour of AM fungi   总被引:9,自引:0,他引:9  
 Arbuscular mycorrhizal (AM) fungi are obligately biotrophic organisms that live symbiotically with the roots of most plants. The establishment of a functional symbiosis between AM fungi and host plants involves a sequence of recognition events leading to the morphological and physiological integration of the two symbionts. The developmental switches in the fungi are triggered by host signals which induce changes in gene expression and a process leading to unequivocal recognition between the two partners of the symbiosis. It has been calculated that about 80% of plant families from all phyla of land plants are hosts of AM fungi. The remaining plant species are either non-mycorrhizal or hosts of mycorrhizas other than the arbuscular type. Non-host plants have been used to obtain information on the factors regulating the development of a functional symbiosis. The aim of this present review is to highlight present-day knowledge of the fungal developmental switches involved in the process of host/non-host discrimination. The following stages of the life cycle of AM fungi are analysed in detail: spore germination, presymbiotic mycelial growth, differential branching pattern and chemotropism, appressorium formation, root colonization. Accepted: 17 June 1998  相似文献   

9.
Bever  James D. 《Plant and Soil》2002,244(1-2):281-290
While the mutualistic interaction between plants and AM fungi is of obvious importance to ecosystem processes, the factors influencing the ecological and evolutionary dynamics within this interaction are poorly understood. The mutual interdependence of plant and AM fungal relative growth rates could generate complex dynamics in which the composition of the AM fungal community changes due to association with host and this change in fungal composition then differentially feeds back on plant growth. I first review evidence for feedback dynamics and then present an approach to evaluating such complex dynamics. I specifically present evidence of host-specific differences in the population growth rates of AM fungi. Pure cultures of AM fungi were mixed to produce the initial fungal community. This community was then distributed into replicate pots and grown with one of four co-occurring plant species. Distinct compositions of AM fungal spores were produced on different host species. The AM fungal communities were then inoculated back onto their own host species and grown for a second growing season. The differentiation observed in the first generation was enhanced during this second generation, verifying that the measure of spore composition reflects host-specific differences in AM fungal population growth rates. In further work on this system, I have found evidence of negative feedback through two pairs of plant species. The dynamic within the AM fungal community can thereby contribute to the coexistence of plant species.  相似文献   

10.
We found that the gradient of a host-specific attractant, cochliophilin A (5-hydroxy-6,7-methylenedioxyflavone) isolated from the roots of spinach triggered encystment followed by germination of zoospores of Aphanomyces cochlioidesat a concentration less than micromolar order. This compound did not affect the growth and reproduction of this phytopathogen up to 10–6 M concentration in the culture medium. We also observed that mastoparan, an activator of heterotrimeric G-protein could inhibit the motility of zoospores and then strikingly effect encystment followed by 60–80% germination of cysts. Concomitant application of cochliophilin A and mastoparan showed stronger encystment followed by 100% germination of cysts. In addition, we have observed that chemicals interfering with phospholipase C activity (neomycin) and Ca2+ influx/release (EGTA and loperamide) suppress cochliophilin A or mastoparan induced encystment and germination. These results suggest that G-protein mediated signal transduction mechanism may be involved in the differentiation of the A. cochlioides zoospores. This is the first report on the differentiation of oomycete zoospores initiated by a host-specific plant signal or a G-protein activator.  相似文献   

11.
Abstract

Arbuscular mycorrhizal (AM) fungi are non-specific symbionts developing mutual and beneficial symbiosis with most terrestrial plants. Because of the obligatory nature of the symbiosis, the presence of the host plant during the onset and proceeding of symbiosis is necessary. However, AM fungal spores are able to germinate in the absence of the host plant. The fungi detect the presence of the host plant through some signal communications. Among the signal molecules, which can affect mycorrhizal symbiosis are plant hormones, which may positively or adversely affect the symbiosis. In this review article, some of the most recent findings regarding the signaling effects of plant hormones, on mycorrhizal fungal symbiosis are reviewed. This may be useful for the production of plants, which are more responsive to mycorrhizal symbiosis under stress.  相似文献   

12.
13.
The motile zoospores of the damping-off pathogen Aphanomyces cochlioides aggregate on host plants (e.g., sugar beet, spinach) guided by the host-specific plant signal cochliophilin A before infection. To assess the potential role of secondary metabolites in nonhost resistance, acetone extracts of 200 nonhost traditional medicinal plants from Chinese and Bangladeshi origins were tested for the motility behaviour of A. cochlioides zoospores using a particle bioassay method. Nearly one third of the tested plant extracts exhibited diverse deleterious activities such as repellent, stimulant, motility halting and lysis against A. cochlioides zoospores. Among these active plants, an extract of the Chinese medicinal plant Dalbergia odorifera displayed potent repellent activity toward zoospores. Chromatographic separation of D. odorifera constituents revealed that the repellent activity was regulated by the cumulative effect of three motility-affecting isoflavonoids, viz. (+/-)-medicarpin (repellent at 150 microg/ml), (-)-claussequinone (stimulant at 100 microg/ml) and formononetin (stimulant and attractant at 50 microg/ml). A mixture (1:1:1, w/w/w) of these three compounds exhibited only repellent activity toward zoospores at a concentration lower than 50 microg/ml. These results suggest that nonhost plants might possess potential bioactive secondary metabolites to ward off zoosporic phytopathogens.  相似文献   

14.
In order to assess changes in the community structure of ectomycorrhizal fungi across the tree line, data on distributions of fungi and their host plants, as well as on edaphic factors and stand age, were collected at two montane sites in the Front Range of the Canadian Rockies. Canonical correspondence analysis (CCA) was used to explore relationships between fungal species composition and environmental factors. Richness and diversity of ectomycorrhizal fungi decreased with elevation, in spite of the fact that host plant diversity was highest at the ecotone between the subalpine forest and the alpine zone. Both host plant distribution and edaphic factors were important in explaining the observed changes in fungal species diversity and composition. The majority of ectotnycorrhizal fungi found in the subalpine forest and at the ecotone were conifer associates, while a large proportion of those in the alpine zone were non-host specific and able to form mycorrhizae with both angiosperms and gymnosperms. The abundance of non-host specific fungi in the alpine zone is expected to provide a favorable environment for the establishment of conifer seedlings above the present tree line.  相似文献   

15.
The environmental distribution of non-obligate orchid mycorrhizal (OM) symbionts belonging to the ‘rhizoctonia’ complex remains elusive. Some of these fungi, indeed, are undetectable in soil outside the host rhizosphere. A manipulation experiment was performed to assess the importance of neighbouring non-orchid plants and soil as possible reservoirs of OM fungi for Spiranthes spiralis, a widespread photosynthetic European terrestrial orchid species. Fungi of S. spiralis roots were identified by DNA metabarcoding before and 4 months after the removal of the surrounding vegetation and soil. Although such a treatment significantly affected fungal colonization of newly-formed orchid roots, most OM fungi were consistently associated with the host roots. Frequency patterns in differently aged roots suggest that these fungi colonize new orchid roots from either older roots or other parts of the same plant, which may thus represent an environmental source for the subsequent establishment of the OM symbiosis.  相似文献   

16.
Abstract. 1. Nymphs of Vanduzeea arquata Say have been found to be more host-specific in nature and to show a higher degree of selectivity in host discrimination experiments than nymphs of Enchenopa binotata (Say), It was hypothesized that this differential selectivity would be reflected in the probing behaviour of individuals placed on twigs of host and non-host plants. Probing behaviour was examined by direct observation of nymphs and by sectioning and staining the probed plant tissues.
2. All nymphs probed readily and for extended periods on both host and non-host twigs. E.binotuta nymphs showed no consistent differences in probing behaviour on hosts versus non-hosts, but V.atquuta nymphs were more likely to withdraw their stylets within 60 s when on non-host twigs and produced honeydew only when on their host species. V.urquatu nymphs reached the phloem sieve elements only when on host twigs and broke many cells in peripheral plant tissue layers while probing. E.binotata nymphs broke few cells and often reached the phloem of non-host as well as host plants.
3. Nymphs of V.arquata always reject non-host plants, apparently in the course of probing and prior to encountering the phloem sap. Chemical compounds released from ruptured parenchyma cells may act as probing stimulants or inhibitors. E.binotura nymphs often feed on non-host plants in a non-choice situation; their preferential settling on host twigs in discrimination experiments may reflect a tendency to abandon non-host twigs more readily than host twigs.  相似文献   

17.
Summary This study evaluates the potential of Paenibacillus brasilensis strain PB177 to inhibit phytopathogenic fungi commonly causing maize diseases and to colonize maize plants. In vitro assays demonstrated antagonistic activity against the fungal pathogens, Fusarium moniliforme and Diplodia macrospora. The PB177 strain was tagged with the gfp gene, encoding the green fluorescent protein (GFP) and GFP-tagged bacteria were detected attached to maize roots by stereo- and confocal microscopy. The GFP-tagged bacteria were also used to treat maize seeds before challenging the seeds with two phytopathogenic fungi. The results demonstrated that the bacterial cells are mobilized to the maize roots in the presence of the fungal pathogens. The ability of P. brasilensis PB177 to inhibit fungal growth in vitro and its capability of colonization of maize roots in vivo suggest a potential application of this strain as a biological control agent. This is the first report on the successful introduction of the GFP marker gene into a P. brasilensis strain, enabling the direct observation of these promising plant growth promoting bacteria on maize roots in situ.  相似文献   

18.
IN contrast to bacteriophages which are strictly host-specific, double stranded RNA fungal viruses are shown to be able to infect a different host genus and so bear some similarity to some viruses of higher plants. The technique of infecting yeasts with viruses from filamentous fungi and the morphological criterion by which infection is detected are described here.  相似文献   

19.
In this study we tested for trade-offs between the benefit arbuscular mycorrhizal (AM) fungi provide for hosts and their competitive ability in host roots, and whether this potential trade-off shifts in the presence of a plant stress (herbivory). We used three species of AM fungi previously determined to vary in host growth promotion and spore production in association with host plants. We found that these AM fungal species competed for root space, and the best competitor, Scutellospora calospora, was the worst mutualist. In addition, the worst competitor, Glomus white, was the best mutualist. Competition proved to have stronger effects on fungal infection patterns than herbivory, and competitive dominance was not altered by herbivory. We found a similar pattern in a previous test of competition among AM fungi, and we discuss the implications of these results for the persistence of the mutualism and feedbacks between AM fungi and their plant hosts.  相似文献   

20.
Polygalacturonases (PGs) hydrolyze the homogalacturonan of plant cell-wall pectin and are important virulence factors of several phytopathogenic fungi. In response to abiotic and biotic stress, plants accumulate PG-inhibiting proteins (PGIPs) that reduce the activity of fungal PGs. In Arabidopsis thaliana, PGIPs with comparable activity against BcPG1, an important pathogenicity factor of the necrotrophic fungus Botrytis cinerea, are encoded by two genes, AtPGIP1 and AtPGIP2. Both genes are induced by fungal infection through different signaling pathways. We show here that transgenic Arabidopsis plants expressing an antisense AtPGIP1 gene have reduced AtPGIP1 inhibitory activity and are more susceptible to B. cinerea infection. These results indicate that PGIP contributes to basal resistance to this pathogen and strongly support the vision that this protein plays a role in Arabidopsis innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号