首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The HPLC/MS system, in which a monolithic silica capillary column is directly connected to an electronspray-ionization mass spectrometer, showed superior performance at high mobile phase linear velocity. A two-dimensional (2D) HPLC/MS system was established, using an ion-exchange particle-packed capillary column at the first dimension and a monolithic silica capillary column at the second dimension. In an analysis of tryptic fragments from bovine serum albumin, an 81% sequence coverage, obtained by the 2D-HPLC/MS system, increased by 23% as compared to a 1D-HPLC/MS system. This 2D-HPLC/MS system using a monolithic silica capillary column should be useful for enhancing sequence coverage of tryptic fragments in proteomics.  相似文献   

2.
Feng S  Pan C  Jiang X  Xu S  Zhou H  Ye M  Zou H 《Proteomics》2007,7(3):351-360
Immobilized metal affinity chromatography (IMAC) is a commonly used technique for phosphoproteome analysis due to its high affinity for adsorption of phosphopeptides. Miniaturization of IMAC column is essential for the analysis of a small amount of sample. Nanoscale IMAC column was prepared by chemical modification of silica monolith with iminodiacetic acid (IDA) followed by the immobilization of Fe3+ ion inside the capillary. It was demonstrated that Fe3+-IDA silica monolithic IMAC capillary column could specifically capture the phosphopeptides from tryptic digest of alpha-casein with analysis by MALDI-TOF MS. The silica monolithic IMAC capillary column was manually coupled with nanoflow RPLC/nanospray ESI mass spectrometer (muRPLC-nanoESI MS) for phosphoproteome analysis. The system was validated by analysis of standard phosphoproteins and then it was applied to the analysis of protein phosphorylation in mouse liver lysate. Besides MS/MS spectra, MS/MS/MS spectra were also collected for neutral loss peak. After database search and manual validation with conservative criteria, 29 singly phosphorylated peptides were identified by analyzing a tryptic digest of only 12 mug mouse liver lysate. The results demonstrated that the silica monolithic IMAC capillary column coupled with muRPLC-nanoESI MS was very suitable for the phosphoproteome analysis of minute sample.  相似文献   

3.
Weak cation-exchange (WCX) and HILIC modes columns were prepared by on-column polymerization of acrylic acid on monolithic silica capillary columns modified with N-(3-triethoxysilylpropyl)methacrylamide anchor groups. The polymer-coated columns could be used for HILIC mode separation of pyridylamino (PA)-sugars and peptides including a tryptic digest of BSA, while for weak cation-exchange mode for the separation of proteins and nucleosides even at high linear velocity. The poly(acrylic acid) coated monolithic silica capillary columns showed greater retention toward PA-sugars than a polyacrylamide coated monolithic silica capillary columns prepared in the same manner. Proteins and nucleosides were separated effectively at pH 6.9 using the same column. The column provided fair permeability after the polymer-coating step. High-speed separation of proteins at u=4.66 mm/s with high efficiency was shown to be possible, while high-speed separation of nucleosides has achieved within one minute using the column at u=8.67 mm/s, suggesting that the column will be suitable for the second dimension separation of multidimensional HPLC systems.  相似文献   

4.
An improved strategy for the preparation of octadecylated silica monolith capillary column with high homogeneity was proposed. Column performance was evaluated by nanoscale HPLC. The design for constructing an integrated nanoelectrospray emitter on the octadecylated silica monolith capillary column was first introduced. In comparison with the separated configuration where the emitter is connected to monolithic capillary column by the aid of a zero dead volume union, the integrated capillary column has the inherent advantage of the minimized extracolumn volume thus providing improved separation quality. The performance of the integrated monolithic capillary column was evaluated by separation of BSA tryptic digest, and peak capacity of 313 with a 30-cm column was obtained. The high separation performance allowed highly confident identification of 662 distinct proteins through assignment of 1933 unique peptides by analysis of tryptic digest of 0.5 mug of Saccharomyces cerevisiae proteins. The higher separation efficiency by a 60-cm monolithic capillary column increased the proteome coverage with identification of 1323 proteins through assignment of 5501 unique peptides over 400-min gradient elution.  相似文献   

5.
A two-dimensional high-performance liquid chromatography (2D-HPLC) system for protein separation was developed using an ion-exchange column in the first dimension and a reversed-phase monolithic column in the second dimension. The system demonstrated efficient separation of proteins in comparison with conventional systems. For proteomic analysis, proteins extracted from the cell surface of the yeast were separated by 2D-HPLC and evaluated.  相似文献   

6.
Weak cation-exchange (WCX) and HILIC modes columns were prepared by on-column polymerization of acrylic acid on monolithic silica capillary columns modified with N-(3-triethoxysilylpropyl)methacrylamide anchor groups. The polymer-coated columns could be used for HILIC mode separation of pyridylamino (PA)-sugars and peptides including a tryptic digest of BSA, while for weak cation-exchange mode for the separation of proteins and nucleosides even at high linear velocity. The poly(acrylic acid) coated monolithic silica capillary columns showed greater retention toward PA-sugars than a polyacrylamide coated monolithic silica capillary columns prepared in the same manner. Proteins and nucleosides were separated effectively at pH 6.9 using the same column. The column provided fair permeability after the polymer-coating step. High-speed separation of proteins at u = 4.66 mm/s with high efficiency was shown to be possible, while high-speed separation of nucleosides has achieved within one minute using the column at u = 8.67 mm/s, suggesting that the column will be suitable for the second dimension separation of multidimensional HPLC systems.  相似文献   

7.
We report a new design of a fully automated, high-efficiency parallel nonsplit nanoflow capillary HPLC system, coupled on-line with linear ion trap (LTQ) and high performance nanoelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (nanoESI LTQ-FTICR MS). The system, intended for high-throughput proteome analysis of complex protein mixtures, notably serum and plasma, consists of two reversed-phase trap columns for large volume sample injection with high speed sample loading and desalting and two reversed-phase analytical capillary columns. Through a nanoscale two-position, 10-port switching valve, the whole system is terminated by a 10 microm i.d. of nanoemitter mounted on the nanoelectrospray source in front of the sampling cone of the LTQ-FTICR MS. Gradient elution to both nanoflow-rate capillary columns is simultaneously delivered by a single HPLC system via two independent binary gradient pump systems. The parallel capillary column approach eliminates the time delays for column regeneration/equilibration since one capillary column is used for separating the sample mixtures and delivering the separated fractions to the MS, while the other capillary column is being regenerated and equilibrated. The reproducibility of retention time and peak intensity of the present automated parallel nanoflow-rate capillary HPLC system is comparable to that obtained using a single column configuration. Replicate injections of tryptic digests indicated that this system provided good reproducibility of retention time and peak area on both columns with average CV values of less than 1.08% and 7.04%, respectively. Throughput was increased to 100% for 2-h LC-MS analysis compared to the single capillary column LC-MS pipeline. Application of this system is demonstrated in a plasma proteomic study. A total of 312 868 MSMS events were acquired and 1564 proteins identified with high confidence (Protein Prophet > or = 0.9, and peptides matched > or = 2). Comparison of a series of plasma fractions run using the single-column LC-MS versus the parallel-column LC-MS demonstrated that parallel-column LC-MS system significantly reduced the sample carryover, improved MS data quality and increased the number of MS/MS sequence scan events.  相似文献   

8.
Jiang X  Feng S  Tian R  Han G  Jiang X  Ye M  Zou H 《Proteomics》2007,7(4):528-539
An approach was developed to automate sample introduction for nanoflow LC-MS/MS (microLC-MS/MS) analysis using a strong cation exchange (SCX) trap column. The system consisted of a 100 microm id x 2 cm SCX trap column and a 75 microm id x 12 cm C18 RP analytical column. During the sample loading step, the flow passing through the SCX trap column was directed to waste for loading a large volume of sample at high flow rate. Then the peptides bound on the SCX trap column were eluted onto the RP analytical column by a high salt buffer followed by RP chromatographic separation of the peptides at nanoliter flow rate. It was observed that higher performance of separation could be achieved with the system using SCX trap column than with the system using C18 trap column. The high proteomic coverage using this approach was demonstrated in the analysis of tryptic digest of BSA and yeast cell lysate. In addition, this system was also applied to two-dimensional separation of tryptic digest of human hepatocellular carcinoma cell line SMMC-7721 for large scale proteome analysis. This system was fully automated and required minimum changes on current microLC-MS/MS system. This system represented a promising platform for routine proteome analysis.  相似文献   

9.
We attempted an analysis of naturally occurring polyprenol and dolichol using a monolithic silica capillary column in HPLC. First, the separation of the polyprenol mixture alone was performed using a 250 x 0.2 mm inner diameter (ID) octadecylsilyl (ODS)-monolithic silica capillary column. The resolution of the separation between octadecaprenol (prenol 18) and nonadecaprenol (prenol 19) exceeded by >or=2-fold the level recorded when using a conventional ODS-silica particle-packed column (250 x 4.6 mm ID) under the same elution conditions. Next, the mixture of the prenol type (polyprenol) and dolichol type (dihydropolyprenol) was subjected to this capillary HPLC system, and the separation of each homolog was successfully achieved. During the analysis of polyprenol fraction derived from Eucommia ulmoides leaves, dolichols were found as a single peak, including all-trans-polyprenol and cis-polyprenol previously identified. This sensitive high-resolution system is very useful for the analysis of compounds that are structurally close to polyprenols and dolichols and that have a low content.  相似文献   

10.
Conventional and comprehensive two-dimensional (2D) HPLC systems using the combination of titania and monolithic columns were established for the on-line analysis of phosphopeptides. Compared with immobilized metal affinity chromatography of a general method for the analysis of phosphopeptides, the use of titania columns in the analysis permits the specific isolation of phosphopeptides in a higher yield. Using the current 2D HPLC systems, phosphopeptides were specifically isolated from nonphosphorylated peptides by the first-dimension titania column, followed by the high-speed separation of the phosphopeptides by the second-dimension monolithic column. Proteolytic digests of beta-casein were analyzed within 30 min using the comprehensive 2D HPLC system; all phosphopeptides from beta-casein could be efficiently isolated and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The comprehensive 2D HPLC system coupled with mass spectrometry will be useful for high-throughput and on-line phosphoproteome analyses.  相似文献   

11.
Due to hydrophobicity, structural analysis of integral membrane proteins poses a formidable challenge for current mass spectrometry-based proteomics approaches. Herein, we demonstrate results from optimized sample preparation and enzymatic proteolysis procedures for the complete primary structure determination of a targeted integral membrane protein, lens aquaporin 0 (AQP0). Plasma membrane from bovine lens tissue was alkali treated and tryptic digestion was performed in optimized acetonitrile-ammonium bicarbonate solution. Full sequence coverage of AQP0 was observed as tryptic peptides using both matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and capillary liquid chromatography tandem mass spectrometry (cLC/MS/MS). An amino acid mutation of Thr to Ile/Leu at residue 199 was deduced based on MS/MS results. In a complementary effort to fully sequence the protein, peptic digestion was developed to take advantage of hydrophobic protein solubility in organic acid as well as the decreased activity of pepsin at low pH. Peptic digestion in 10% formic acid (pH 1.2) generated peptides of 500 to 3000 Da and gave 100% sequence coverage by cLC/MS/MS. In addition to post-translational modifications reported previously, a new phosphorylation site at serine 229 and two oxidation sites at tryptophan 202 and 205 were detected on the protein. These methodologies provide complementary detergent- and CNBr-free procedures for detailed analysis of this important membrane channel protein and offer promise for analysis of the integral membrane proteome.  相似文献   

12.
Pertussis toxoid, an acellular pertussis vaccine prepared by hydrogen peroxide treatment in the presence of Fe3+, has not been well characterized. Because the toxoid has been a part of the DTaP vaccine for infants, it is of interest and significance to have a clear understanding of its structure. The five subunits of pertussis toxin (PT) have a combined molecular weight of approximately 95,000 Da. The peroxide treatment in toxoid formation introduces additional complexity into the protein sequence. To maximize sequence coverage, a two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) approach was used to analyze the tryptic digest of toxoid as a whole. An analytical-scale high-performance liquid chromatography (HPLC) instrument using a pentafluorophenyl (PFP) column was used as the first-dimensional LC for fraction collection. The fractions were then analyzed by nanoLC-MS/MS using a C18 column to acquire collision-activated dissociation (CAD) spectra of the tryptic peptides. It is shown that a PFP column has a different peptide retention specificity from a C18 column. A combination of a PFP column and a C18 column is a viable approach for dispersing peptides in a complex mixture. From the structures of 65 peptides that represented approximately 50% of its sequence, PT was found to have sustained heavy oxidative damages during toxoid preparation. Nearly all methionine, cysteine, and (likely) tryptophan residues were oxidized. Evidence of histidine and tyrosine oxidation was also observed. In addition, a large percentage of asparagine was found hydrolyzed to aspartic acid. These findings corrrelate well with the reduction of PT toxicity by peroxide treatment.  相似文献   

13.
Automated multidimensional capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been increasingly applied in various large scale proteome profiling efforts. However, comprehensive global proteome analysis remains technically challenging due to issues associated with sample complexity and dynamic range of protein abundances, which is particularly apparent in mammalian biological systems. We report here the application of a high efficiency cysteinyl peptide enrichment (CPE) approach to the global proteome analysis of human mammary epithelial cells (HMECs) which significantly improved both sequence coverage of protein identifications and the overall proteome coverage. The cysteinyl peptides were specifically enriched by using a thiol-specific covalent resin, fractionated by strong cation exchange chromatography, and subsequently analyzed by reversed-phase capillary LC-MS/MS. An HMEC tryptic digest without CPE was also fractionated and analyzed under the same conditions for comparison. The combined analyses of HMEC tryptic digests with and without CPE resulted in a total of 14 416 confidently identified peptides covering 4294 different proteins with an estimated 10% gene coverage of the human genome. By using the high efficiency CPE, an additional 1096 relatively low abundance proteins were identified, resulting in 34.3% increase in proteome coverage; 1390 proteins were observed with increased sequence coverage. Comparative protein distribution analyses revealed that the CPE method is not biased with regard to protein M(r) , pI, cellular location, or biological functions. These results demonstrate that the use of the CPE approach provides improved efficiency in comprehensive proteome-wide analyses of highly complex mammalian biological systems.  相似文献   

14.
This paper describes a method that substantially improves the sensitivity of high-performance liquid chromatography hydrogen exchange-mass spectrometry (HPLC HX MS). The success of this method relies on using a capillary HPLC column (0.1mm IDx5cmL) to increase the sensitivity of electrospray ionization, while keeping analysis times short to minimize hydrogen/deuterium (H/D) exchange. A small, immobilized pepsin column and a capillary C18 trap were included in the capillary HPLC MS system to provide rapid digestion, peptide concentration, and desalting while maintaining slow H/D exchange conditions. To minimize the analysis time, dead volumes and capacities of all components were optimized. Fully deuterated cytochrome c and its fully deuterated peptic peptides were used to evaluate deuterium recovery at amide linkages. The deuterium recovery measured at low flow rates using this system spanned a range of 66-77% (average of 71%), which was similar to the range measured for a much larger system (67-80%, average 75%). Signal levels of most peptides for the downsized system increased by about 100-fold compared with the signal for the larger system. These results greatly strengthen the HPLC HX MS technique for studies where the quantity of protein is small.  相似文献   

15.
Ma J  Hou C  Liang Y  Wang T  Liang Z  Zhang L  Zhang Y 《Proteomics》2011,11(5):991-995
A metal‐ion chelate immobilized enzyme reactor (IMER) supported on organic–inorganic hybrid silica monolith was developed for rapid digestion of proteins. The monolithic support was in situ prepared in a fused silica capillary via the polycondensation between tetraethoxysilane hydrolytic sol and iminodiacetic acid conjugated glycidoxypropyltrimethoxysilane. After activated by Cu2+, trypsin was immobilized onto the monolithic support via metal chelation. Proteolytic capability of such an IMER was evaluated by the digestion of myoglobin and BSA, and the digests were further analyzed by microflow reversed‐phase liquid chromatography with ESI‐MS/MS. Similar sequence coverages of myoglobin and BSA were obtained by IMER, in comparison to those obtained by in‐solution digestion (91 versus 92% for 200 ng myoglobin, and 26 versus 26% for 200 ng BSA). However, the digestion time was shortened from 12 h to 50 s. When the enzymatic activity was decreased after seven runs, the IMER could be easily regenerated by removing Cu2+ via EDTA followed by trypsin immobilization with fresh Cu2+ introduced, yielding the equal sequence coverage (26% for 200 ng BSA). For ~5 μg rat liver extract, even more proteins were identified with the immobilized trypsin digestion within 150 s in comparison to the in‐solution digestion for 24 h (541 versus 483), demonstrating that the IMER could be a promising tool for efficient and high‐throughput proteome profiling.  相似文献   

16.
Capillary column immobilised metal affinity chromatography (IMAC) has been combined on-line with electrospray ionisation/quadrupole time-of-flight mass spectrometry for the fractionation of histidine-containing peptides. IMAC beads (Poros 20MC, 20 microm) containing imidodiacetate chelating groups on a cross-linked poly(styrene-divinylbenzene) support were packed into a fused silica column (250 microm i.d.), which was interfaced to the electrospray ion source of the spectrometer. A Cu(II) activated column was used to isolate histidine-containing peptides from tryptic and other peptide mixtures with an average breakthrough of 9.1%, to reduce the complexity of the mass spectral analysis. The analysis cycle time was reduced to less than 15 min, at an optimum flow rate of 7.5 microL/min, without sacrificing peptide selectivity. Direct coupling of capillary IMAC with MS allows on-line separation, using MS compatible loading and elution buffers, and detection in a high-throughput fashion when compared to off-line strategies.  相似文献   

17.
Proteomic workflows involving liquid-based protein separations are an alternative to gel-based protein analysis, however the trypsin digestion procedure is usually difficult to implement, particularly when processing low abundance proteins from capillary column effluent. To convert the protein to peptides for the purpose of identification, current protocols require several sample handling steps, and sample losses become an issue. In this study, we present an improved system that conducts reversed-phase protein chromatography and rapid on-line tryptic digestion requiring sub-nanogram quantities of protein. This system employs a novel mirror-gradient concept that allows for dynamic titration of the column effluent to create optimal conditions for real-time tryptic digestion. The purpose behind this development was to improve the limits of detection of the online concept, to support flow-based alternatives to gel-based proteomics and to simplify the characterization of low abundance proteins. Using test mixtures of proteins, we show that peptide mass fingerprinting with high sequence representation can be easily achieved at the 20 fmol level, with detection limits down to 5 fmol (85 pg myoglobin). Limits of identification using standard data-dependent MS/MS experiments are as low as 10 fmol. These results suggest that the nanoLC-trypsin-MS/MS system could represent an alternative to the conventional "1D-gel to MS" proteomic strategy.  相似文献   

18.
Protein disulfide isomerase (PDI) has been identified in a protein extract from the venom duct of the marine snail C. amadis. In-gel tryptic digestion of a thick protein band at approximately 55 kDa yields a mixture of peptides. Analysis of tryptic fragments by MALDI-MS/MS and LC-ESI-MS/MS methods permits sequence assignment. Three tryptic fragments yield two nine residue sequences (FVQDFLDGK and EPQLGDRVR ) and an eleven residue sequence (DQESTGALAFK ). Database analysis using peptides and were consistent with the sequence of PDI and peptide appears to be derived from a co-migrating protein. In identifying proteins based on the characterization of short peptide sequences the question arises about the reliability of identification using peptide fragments. Here we have also demonstrated the minimum length of peptide fragment necessary for unambiguous protein identification using fragments obtained from the experimentally derived sequences. Sequences of length > or =7 residues provide unambiguous identification in conjunction with protein molecular mass as a filter. The length of sequence necessary for unambiguous protein identification is also established using randomly chosen tryptic fragments from a standard dataset of proteins. The results are of significance in the identification of proteins from organisms with unsequenced genomes.  相似文献   

19.
Two dimensional high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (2D-HPLC-ESI-MS/MS) is one of the most powerful techniques for high resolution, efficiency, and throughput separation and identification of proteomes. For a bottom-up strategy-based proteome analysis, usually multistep salt elution was needed in the first dimension separation by SCX, to simplify the peptides for the further second dimensional separation by RPLC. Here, by using a 30 cm-long serially coupled long column (SCLC) in the second dimension, we reduced the salt steps of SCX from 13 to 5 to shorten the total analysis time. Compared to the commonly applied 2D-HPLC with over 10-step salt elution in SCX and microRPLC with a short column (SC), named as SC-2D, the peak capacity of 2D-HPLC with a SCLC column, named as SCLC-2D, was increased 3.3-folds while the analysis time was increased by only 1.17-folds. Therefore, the time-based protein identification efficiency was ~55 protein groups/h, nearly 2-fold of that for SC-2D (~28 protein groups/h). With the further combination of assisted solubilization by ionic liquids and SCLC-2D, 608 integral membrane proteins (IMPs) (27.66% of the total 2198 proteins, FDR < 1%) were identified from rat brain, more than those obtained by the traditional urea method (252 unique IMPs, occupying 17.03% of total 1480 proteins). All of these results demonstrate the promise of the developed technique for large-scale proteome analysis.  相似文献   

20.
Tryptic digestion of proteins continues to be a workhorse of proteomics. Traditional tryptic digestion requires several hours to generate an adequate protein digest. A number of enhanced accelerated digestion protocols have been developed in recent years. Nonetheless, a need still exists for new digestion strategies that meet the demands of proteomics for high-throughput and rapid detection and identification of proteins. We performed an evaluation of direct tryptic digestion of proteins on a MALDI target plate and the potential for integrating RP HPLC separation of protein with on-target tryptic digestion in order to achieve a rapid and effective identification of proteins in complex biological samples. To this end, we used a Tempo HPLC/MALDI target plate deposition hybrid instrument (ABI). The technique was evaluated using a number of soluble and membrane proteins and an MRC5 cell lysate. We demonstrated that direct deposition of proteins on a MALDI target plate after reverse-phase HPLC separation and subsequent tryptic digestion of the proteins on the target followed by MALDI TOF/TOF analysis provided substantial data (intact protein mass, peptide mass and peptide fragment mass) that allowed a rapid and unambiguous identification of proteins. The rapid protein separation and direct deposition of fractions on a MALDI target plate provided by the RP HPLC combined with off-line interfacing with the MALDI MS is a unique platform for rapid protein identification with improved sequence coverage. This simple and robust approach significantly reduces the sample handling and potential loss in large-scale proteomics experiments. This approach allows combination of peptide mass fingerprinting (PMF), MS/MS peptide fragment fingerprinting (PPF) and whole protein MS for both protein identification and structural analysis of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号