首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of urea, type I collagen could form a gel with crosslinks with microbial transglutaminase (MTGase). Collagen self-assembly was accelerated with the addition of MTGase. The proportion of reconstructed collagen fibrils was raised with the addition of MTGase. MTGase-treated collagen gel remained gelled at high temperatures at which collagen denatured. By treatment with MTGase, collagen could form the gel under impossible condition to collagen self-assembly, and that denaturation temperature was raised.  相似文献   

2.
Effects of protein isolate from bambara groundnut (BGPI) at different levels (0–6 %, w/w) in combination with microbial transglutaminase (MTGase) at different concentrations (0, 0.3 and 0.6 U g?1surimi) on gels properties of sardine (Sardinella albella) surimi were investigated. In the absence of MTGase, the increases in breaking force and deformation of gels were obtained when BGPI at levels of 1.5–3 % was incorporated (P?<?0.05). The further increases in BGPI levels (4.5–6 %) resulted in the decrease in breaking force and deformation (P?<?0.05). When MTGase (0.3 and 0.6 U g?1surimi) was added, the increase in breaking force and deformation were noticed, regardless of BGPI levels, and the strengthening effect was in dose-dependent manner. The increases in hardness, gumminess and chewiness were also observed when surimi gel was added with BGPI and MTGase (P?<?0.05). Water-holding capacity of gels was improved with increasing level of BGPI, and MTGase incorporated (P?<?0.05). Whiteness of gels slightly decreased with increasing BGPI levels, however the addition of MTGase had no impact on whiteness (P?>?0.05). Based on electrophoretic study, myosin heavy chain decreased with addition of MTGase, indicating the formation of cross-links. More compact structure was observed in gel added with MTGase (0.6 U g?1surimi) and 6 % BGPI, and was accompanied by an increased gel strength.  相似文献   

3.
S-sulfokeratein is prepared through S-sulfonation after the cleavage of disulfide bonds in keratin using ditiothreitol in urea. S-sulfokeratein is composed of two fractions, matrix and microfibril components, and S-sulfokeratein from the matrix component (Bs) can regenerate disulfide bonds. In this study, the effects of Bs and partially reduced Bs on type I collagen self-assembly and properties of reconstructed Bs- or partially reduced Bs-collagen gel were investigated. It was proved that collagen self-assembly was accelerated by the increased amount of added Bs, but partially reduced Bs with 10 mg DTT/100 mg Bs (Bs-10) did not affect the ratio of collagen self-assembly. The mechanical strength of Bs-collagen gel proved to be lower than control, but that of Bs-10-collagen gel was times higher than that of control.  相似文献   

4.
S-sulfokeratein is prepared through S-sulfonation after the cleavage of disulfide bonds in keratin using ditiothreitol in urea. S-sulfokeratein is composed of two fractions, matrix and microfibril components, and S-sulfokeratein from the matrix component (Bs) can regenerate disulfide bonds. In this study, the effects of Bs and partially reduced Bs on type I collagen self-assembly and properties of reconstructed Bs- or partially reduced Bs-collagen gel were investigated. It was proved that collagen self-assembly was accelerated by the increased amount of added Bs, but partially reduced Bs with 10 mg DTT/100 mg Bs (Bs-10) did not affect the ratio of collagen self-assembly. The mechanical strength of Bs-collagen gel proved to be lower than control, but that of Bs-10-collagen gel was times higher than that of control.  相似文献   

5.
Separated thyroid follicles are stable in suspension culture in Coon's modified Ham's F12 medium containing 0.5% calf serum. They resemble follicles in vivo except for the absence of a basal lamina. However, the epithelial cells reverse polarity and the follicles invert when the serum concentration is raised to 5%. A number of substances, especially components of extracellular matrix, were added to the medium to ascertain if they could stabilize the follicles against inversion in 5% serum. Cellular and plasma fibronectin, gelatin, heat-denatured collagen, methylcellulose and laminin did not stabilize. The addition to the medium of as little as 50 micrograms/ml of acid-soluble collagen prepared from calf skin or rat tail tendons resulted in the formation of small clouds of gel. Follicles embedded within the gel were stabilized. Follicles in the same dish but not embedded in the gel inverted. Stabilization was not specific for collagen, since follicles embedded in a plasma clot were also stabilized. A gel was not sufficient for stabilization, since embedding in an agarose gel did not stabilize. Ultrastructural studies indicate that adherence to a limited number of gelled fibers of collagen covering only a small fraction of the basal plasma membrane may be sufficient to stabilize and that a basal lamina formed in the presence of laminin but without added collagen does not stabilize.  相似文献   

6.
A Hybrid collagen fibril (HCF) assembled from xenogeneic collagens is a special kind of collagen fibrils in vivo and plays an important role in living systems. Inspired by nature, can a HCF form in vitro? Herein, we fabricated a new HCF by neutralizing a mixture of type I bullfrog (Rana catesbeiana Shaw) skin collagen and porcine (Sus scrofa domesticus) skin collagen with a phosphate buffer, and investigated its physicochemical properties. Self-assembly kinetics and fluorescence-quenching experiments showed that a significant intermolecular interaction and co-assembly behavior occurred between bullfrog skin collagen and porcine skin collagen, thus confirming that xenogeneic collagens can self-assemble to form HCF. Differential scanning calorimetry revealed that the thermal stability of HCF was completely different from that of the syngeneic bullfrog skin and porcine skin collagen fibrils. This finding indicated that a new kind of collagen fibril was fabricated successfully. Scanning electron microscopy and transmission electron microscopy tests showed that the diameters and D-periodicity lengths of HCF were smaller than those of the syngeneic collagen fibrils, suggesting that the morphological features of HCF were distinguished from those of the syngeneic fibril samples. Moreover, viscoelasticity of a collagen gel also changed after the self-assembly of xenogeneic collagens. Meanwhile, the obtained hybrid gel still exhibited good biocompatibility and cell proliferation properties. Finding from this work provides a new idea for the improvement or regulation of collagen-based products performance.  相似文献   

7.
Summary The ability of the collagen matrix form to support the formation of a basal lamina by cultured normal human epidermal keratinocytes (NHEK) was determined using transmission electron microscopy. The collagen matrix forms tested in this study were a) a dry type I collagen film and b) a type I collagen gel. NHEK were grown for 14 days on the following five different substrates: plain plastic culture dishes without the addition of collagen (PP); plain plastic culture dishes overlaid with a dry, aldehyde-crosslinked type I collagen film (DCF-P); plain plastic culture dishes overlaid with an aldehyde-crosslinked type I collagen gel (GEL-P); Millipore Millicell CM microporous membranes overlaid with a dry, aldehyde-crosslinked type I collagen film (DCF-CM); and Millipore Millicell CM microporous membranes overlaid with an aldehyde-crosslinked type I collagen gel (GEL-CM). NHEK maintained for 2 wk on PP and DCF-P were unable to secrete a basal lamina. NHEK grown for 2 wk on the GEL-P and GEL-CM substrates, however, secreted a contiguous basal lamina at the GEL-NHEK interface. To determine if the appearance of this basal lamina correlated with laminin synthesis, laminin was immunoprecipitated from cellular extracts, as well as media from the apical and basal chambers. NHEK grown on the GEL-P substrate synthesized more laminin than did NHEK grown on the other four alternative substrates. In addition, NHEK grown on GEL-CM were able to direct more laminin to the basal compartment than NHEK grown on DCF-CM substrates. Taken together, the data indicate that the matrix form of collagen can influence basal lamina deposition, laminin synthesis, and laminin trafficking in NHEK.  相似文献   

8.
Cui L  Du G  Zhang D  Chen J 《Bioresource technology》2008,99(9):3794-3800
Thermal stability and conformational changes of transglutaminase (TGase) from a newly isolated Streptomyces hygroscopicus were investigated in this study. The inactivation kinetics of the microbial transglutaminase (MTGase) was fitted using one-step inactivation model. It was much more stable under 40 degrees C. The half-lives for the MTGase at 50 degrees C and 60 degrees C were only 20 min and 8 min, respectively. Spectroscopic studies of the enzyme suggested conformational transition from ordered secondary structural elements (alpha/beta-protein) to unordered structure during thermal denaturation. Some polyols could improve the thermal stability of the enzyme. Among the polyols examined, the prolonged half-lives of 40 min at 50 degrees C and 20 min at 60 degrees C were gained by adding 10% glycerol. The results of differential scanning calorimetric (DSC) analysis showed a distinct transition peak with a significant greater Tm and DeltaH for the MTGase mixed with polyols in comparison with the control, which indicated that the polyols could maintain the natural structure of the enzyme to some extent. The SDS-PAGE electrophoresis of cross-linked casein confirmed that the stabilizers could protect the MTGase from thermal denaturation.  相似文献   

9.
A neutral proteinase, capable of degrading gelatin, has been found in both an active and a latent form in the medium from the culture of rat mesangial cells. The latent form had an Mr of 80,000-100,000 and could be activated with either 4-aminophenylmercuric acetate or prolonged incubation at neutral pH. The active form of the enzyme was extensively purified. The estimated Mr of the purified enzyme on gel filtration was approximately 200,000, indicating that the active enzyme formed aggregates. However, analysis by SDS/polyacrylamide-gel electrophoresis under reducing conditions showed two protein bands, with Mr 68,000 and 66,000. Both proteins were found to contain proteolytic activity when run on SDS/substrate gels. The enzyme was inhibited by EDTA and 1,10-phenanthroline, but not by inhibitors for cysteine, serine or aspartic proteinases. The enzyme did not digest fibronectin, bovine serum albumin, proteoglycan or interstitial collagen. The enzyme degraded pepsin-solubilized placental type V collagen at 31 degrees C, whereas similarly solubilized type IV collagen was only degraded at higher temperatures. In addition, the neutral proteinase degraded native soluble type IV collagen. It also had activity on insoluble type IV collagen of glomerular basement membrane. The above properties suggest that the mesangial neutral proteinase belongs to the gelatinase group of metalloproteinases and that it may play a role in the normal turnover of extracellular glomerular matrix.  相似文献   

10.
The purpose of this work was to investigate the viscoelastic properties of aqueous suspensions of crude collagen powder extracted from bovine hides and nonsubmitted to the hydrolysis reaction that leads to gelatin. The studied variables included the collagen concentration and the addition of xanthan gum or maltodextrin at varied concentrations during heating/cooling of the mixtures. Differential scanning calorimetry thermograms showed that the addition of polysaccharides decreased the endothermic peak areas observed at the denaturation temperature of collagen. The rheological properties of the pure collagen suspensions were highly dependent on concentration: 4% and 6% collagen suspensions presented a great increase in the storage modulus after heating/cooling, whereas for concentrations of 8% and 10% G′ decreased during heating and did not recover its original value after heating/cooling. The frequency sweeps showed that the thermal treatment was responsible by the strengthening of the interactions that formed the polymer network. Addition of 0.1% xanthan gum to collagen suspensions increased the gel strength, especially after heating/cooling of the system, whereas increasing gum concentration to 0.3% resulted in a weaker gel, which could indicate thermodynamic incompatibility between the biopolymers. Mixtures of collagen and maltodextrin resulted in more fluid structures than those obtained with pure collagen at the same collagen concentration and the range of temperatures in which these mixtures behaved as a gel decreased with increasing concentrations of both collagen and maltodextrin, suggesting incompatibilities between the biopolymers.  相似文献   

11.
We previously demonstrated that collagen gel overlayinduced cell remodeling to form lumen and apoptosis inMadin-Darby canine kidney cells. In the present study, we establishedthat collagen gel overlay-induced apoptosis was initiated atareas exclusive of cell remodeling within 24 h (first phase) andextended into areas of cell remodeling within 48 h (second phase).Collagen gel overlay-induced apoptosis was accompanied byselective proteolysis of focal adhesion kinase (FAK), talin,p130cas, and c-src. Upon collagen geloverlay, FAK was initially degraded into a 90-kDa product during thefirst phase and subsequently into a 80-kDa product during the secondphase. Collagen gel overlay-induced apoptosis of focal adhesioncomplex proteins and apoptosis of the first phase could beblocked only by a protease inhibitor cocktail. In addition, we foundthat both DEVD-fmk and ZVAD-fmk inhibited secondary proteolysis of FAK,but only ZVAD-fmk blocked collagen gel overlay-inducedapoptosis of the second phase. Finally, collagen geloverlay-induced apoptosis and proteolysis of focal adhesioncomplex proteins were completely inhibited by the combination ofprotease inhibitor cocktail and ZVAD-fmk. Taken together, collagen geloverlay induces two phases of apoptosis; the first phase is dependent on proteolysis of focal adhesion complex proteins, and thesecond phase on activation of caspases.

  相似文献   

12.
1. A specific collagenase from the culture medium of rabbit synovial fibroblasts was purified by gel filtration and ion-exchange chromatography. 2. The enzyme was homogenous on polyacrylamide-gel electrophoresis and showed only traces of contaminants when tested in gels with a non-specific antiserum. 3. The rabbit fibroblast collagenase could hydrolyse collagen both in solution and in fibrillar form. Viscometry showed that at 35 degrees C the purified enzyme could hydrolyse greater than 50 nmol of collagen/min per mg of enzyme. 4. The purified collagenase cleaved collagen in solution at either 24 degrees or 35 degrees C into the characteristic 1/4 and 3/4-length fragments. However, as compared with the impure enzyme, the purified enzyme at 35 degrees C had a much decreased capacity to further degrade the initial specific cleavage products. 5. The specific rabbit collagenase had a mol. wt. of approx. 32000 as estimated by sodium dodecyl sulphate-polyacrylamide-gel electrophoresis, and 35000 by gel filtration.  相似文献   

13.
Assembly of collagen into microribbons: effects of pH and electrolytes   总被引:3,自引:0,他引:3  
Collagen represents the major structural protein of the extracellular matrix. Elucidating the mechanism of its assembly is important for understanding many cell biological and medical processes as well as for tissue engineering and biotechnological approaches. In this work, conditions for the self-assembly of collagen type I molecules on a supporting surface were characterized. By applying hydrodynamic flow, collagen assembled into ultrathin ( approximately 3 nm) highly anisotropic ribbon-like structures coating the entire support. We call these novel collagen structures microribbons. High-resolution atomic force microscopy topographs show that subunits of these microribbons are built by fibrillar structures. The smallest units of these fibrillar structures have cross-sections of approximately 3 x 5nm, consistent with current models of collagen microfibril formation. By varying the pH and electrolyte of the buffer solution during the self-assembly process, the microfibril density and contacts formed within this network could be controlled. Under certain electrolyte compositions the microribbons and microfibers display the characteristic D-periodicity of approximately 65 nm observed for much thicker collagen fibrils. In addition to providing insight into the mechanism of collagen assembly, the ultraflat collagen matrices may also offer novel ways to bio-functionalize surfaces.  相似文献   

14.
In vitro self-assembled collagen fibrils form a variety of different structures during dialysis. The self-assembly is dependent on several parameters, such as concentrations of collagen and alpha1-acid glycoprotein, temperature, dialysis time, and the acid concentration. For a detailed understanding of the assembly pathway and structural features like banding pattern or mechanical properties it is necessary to study single collagen fibrils. In this work we present a fully automated system to control the permeation of molecules through a membrane like a dialysis tubing. This allows us to ramp arbitrary diffusion rate profiles during the self-assembly process of macromolecules, such as collagen. The system combines a molecular sieving method with a computer assisted control system for measuring process variables. With the regulation of the diffusion rate it is possible to control and manipulate the collagen self-assembly process during the whole process time. Its performance is demonstrated by the preparation of various collagen type I fibrils and native collagen type II fibrils. The combination with the atomic force microscope (AFM) allows a high resolution characterization of the self-assembled fibrils. In principle, the represented system can be also applied for the production of other biomolecules, where a dialysis enhanced self-assembly process is used.  相似文献   

15.
Type I collagen gels are routinely used in biophysical studies and bioengineering applications. The structural and mechanical properties of these fibrillar matrices depend on the conditions under which collagen fibrillogenesis proceeds, and developing a fuller understanding of this process will enhance control over gel properties. Turbidity measurements have long been the method of choice for monitoring developing gels, whereas imaging methods are regularly used to visualize fully developed gels. In this study, turbidity and confocal reflectance microscopy (CRM) were simultaneously employed to track collagen fibrillogenesis and reconcile the information reported by the two techniques, with confocal fluorescence microscopy (CFM) used to supplement information about early events in fibrillogenesis. Time-lapse images of 0.5 mg/ml, 1.0 mg/ml, and 2.0 mg/ml acid-solubilized collagen I gels forming at 27°C, 32°C, and 37°C were collected. It was found that in situ turbidity measured in a scanning transmittance configuration was interchangeable with traditional turbidity measurements using a spectrophotometer. CRM and CFM were employed to reveal the structures responsible for the turbidity that develops during collagen self-assembly. Information from CRM and transmittance images was collapsed into straightforward single variables; total intensity in CRM images tracked turbidity development closely for all collagen gels investigated, and the two techniques were similarly sensitive to fibril number and dimension. Complementary CRM, CFM, and in situ turbidity measurements revealed that fibril and network formation occurred before substantial turbidity was present, and the majority of increasing turbidity during collagen self-assembly was due to increasing fibril thickness.  相似文献   

16.
Discoidin domain receptor I (DDR1) is a receptor tyrosine kinase (RTK) and serves as the receptor for collagen in addition to integrins. It has been well established that Madin-Darby canine kidney (MDCK) cells develop branching tubules in three-dimensional collagen gel in the presence of hepatocyte growth factor (HGF). MDCK cells normally express DDR1. However, the function of DDR1 in this in vitro model system has not been understood. We established stable-transfected MDCK cells harboring DDR1a, DDR1b, or dominant-negative (DN) DDR1 and cultured these transfectants in collagen gel with HGF (2 ng/ml) for the studies of branching tubule morphogenesis. Whether DDR1 played roles in cell growth, apoptosis, and migration was examined. We found that cells over-expressing DDR1a and DDR1b developed shorter tubules with fewer branches in collagen gel. In contrast, DN DDR1 over-expressed cells could not form tubule structure, but instead developed mostly cell aggregates with multiple long extended processes. Over-expression of DDR1a and 1b in MDCK cells resulted in reduction of cell growth when cells were cultured on collagen gel-coated dishes or collagen gel. On the other hand, DN DDR1 enhanced cell death on collagen gel, suggesting that DDR1 is involved in maintenance of cell survival. Moreover, over-expression of DDR1a and DDR1b markedly reduced collagen-induced migration capability, whereas DN DDR1 enhanced it, suggesting that DDR1a and 1b may serve as a negative regulator for alpha2beta1 integrin during migration on collagen substratum. These results indicate that DDR1 plays important role in regulation of HGF-induced branching tubulogenesis by modulating cell proliferation, survival, and cell migration.  相似文献   

17.
Type X collagen was extracted with 1 M NaCl and 10 mM dithiothreitol at neutral pH from fetal human growth plate cartilage and purified to homogeneity by gel filtration and anion-exchange chromatography. The purified protein migrates in SDS/polyacrylamide gels with an apparent Mr of 66,000 under reducing conditions, and as a high-Mr oligomer under non-reducing conditions. Purified collagenase digests most of the molecule; pepsin digestion at 4 degrees C decreases the Mr of the monomer to 53,000. A rabbit antiserum was raised against purified human type X collagen; the IgG fraction was specific for this collagen by criteria of ELISA and immunoblotting after absorption with collagen types I, II, VI, IX and XI. Immunohistological studies localized type X collagen exclusively in the zone of hypertrophic and calcifying cartilage.  相似文献   

18.
19.
Insights into molecular mechanisms of collagen assembly are important for understanding countless biological processes and at the same time a prerequisite for many biotechnological and medical applications. In this work, the self-assembly of collagen type I molecules into fibrils could be directly observed using time-lapse atomic force microscopy (AFM). The smallest isolated fibrillar structures initiating fibril growth showed a thickness of approximately 1.5 nm corresponding to that of a single collagen molecule. Fibrils assembled in vitro established an axial D-periodicity of approximately 67 nm such as typically observed for in vivo assembled collagen fibrils from tendon. At given collagen concentrations of the buffer solution the fibrils showed constant lateral and longitudinal growth rates. Single fibrils continuously grew and fused with each other until the supporting surface was completely covered by a nanoscopically well-defined collagen matrix. Their thickness of approximately 3 nm suggests that the fibrils were build from laterally assembled collagen microfibrils. Laterally the fibrils grew in steps of approximately 4 nm, indicating microfibril formation and incorporation. Thus, we suggest collagen fibrils assembling in a two-step process. In a first step, collagen molecules assemble with each other. In the second step, these molecules then rearrange into microfibrils which form the building blocks of collagen fibrils. High-resolution AFM topographs revealed substructural details of the D-band architecture of the fibrils forming the collagen matrix. These substructures correlated well with those revealed from positively stained collagen fibers imaged by transmission electron microscopy.  相似文献   

20.
Culture of human dermal fibroblasts within a three-dimensional matrix composed of native type I collagen fibrils is widely used to study the cellular responses to the extracellular matrix. Upon contact with native type I collagen fibrils human skin fibroblasts activate latent 72-kDa type IV collagenase/ gelatinase (MMP-2) to its active 59- and 62-kDa forms. This activation did not occur when cells were cultured on plastic dishes coated with monomeric type I collagen or its denatured form, gelatin. Activation could be inhibited by antibodies against MT1-MMP, by the addition of TIMP-2 and by prevention of MT1-MMP processing. MT1-MMP protein was detected at low levels as active protein in fibroblasts cultured as monolayers. In collagen gel cultures, an increase of the active, 60-kDa MT1-MMP and an additional 63-kDa protein corresponding to inactive MT1-MMP was detected. Incubation of medium containing latent MMP-2 with cell membranes isolated from fibroblasts grown in collagen gels caused activation of the enzyme. Furthermore, regulation of MT1-MMP expression in collagen cultures seems to be mediated by alpha2beta1 integrins. These studies suggest that activation of the proMMP-2 is regulated at the cell surface by a mechanism which is sensitive to cell culture in contact with physiologically relevant matrices and which depends on the ratio of proenzyme and the specific inhibitor TIMP-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号