首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel denitrifier Alcaligenes sp. STC1 was identified. The strain efficiently denitrifies under an atmosphere of 10% oxygen (O2) where Paracoccus denitrificans, one of the most studied aerobic denitrifiers, had less denitrifying activity, indicating that the strain has an O2-torelant denitrifying system. It denitrified by using C1-carbon sources such as formate and methanol as well as glucose, glycerol, and succinate. The genes for the copper-containing nitrite reductase and azurin of this C1-using denitrifier were cloned. Their predicted products of them were similar to those of their counterparts and the maximum similarities were 90% and 92%, respectively.  相似文献   

2.
Analyses of the complete genomes of sequenced denitrifying bacteria revealed that approximately 1/3 have a truncated denitrification pathway, lacking the nosZ gene encoding the nitrous oxide reductase. We investigated whether the number of denitrifiers lacking the genetic ability to synthesize the nitrous oxide reductase in soils is important for the proportion of N2O emitted by denitrification. Serial dilutions of the denitrifying strain Agrobacterium tumefaciens C58 lacking the nosZ gene were inoculated into three different soils to modify the proportion of denitrifiers having the nitrous oxide reductase genes. The potential denitrification and N2O emissions increased when the size of inoculated C58 population in the soils was in the same range as the indigenous nosZ community. However, in two of the three soils, the increase in potential denitrification in inoculated microcosms compared with the noninoculated microcosms was higher than the increase in N2O emissions. This suggests that the indigenous denitrifier community was capable of acting as a sink for the N2O produced by A. tumefaciens. The relative amount of N2O emitted also increased in two soils with the number of inoculated C58 cells, establishing a direct causal link between the denitrifier community composition and potential N2O emissions by manipulating the proportion of denitrifiers having the nosZ gene. However, the number of denitrifiers which do not possess a nitrous oxide reductase might not be as important for N2O emissions in soils having a high N2O uptake capacity compared with those with lower. In conclusion, we provide a proof of principle that the inability of some denitrifiers to synthesize the nitrous oxide reductase can influence the nature of the denitrification end products, indicating that the extent of the reduction of N2O to N2 by the denitrifying community can have a genetic basis.  相似文献   

3.
Potential rates of nitrification and denitrification were measured in an oligotrophic sediment system. Nitrification potential was estimated using the CO oxidation technique, and potential denitrification was measured by the acetylene blockage technique. The sediments demonstrated both nitrifying and denitrifying activity. Eh, O2, and organic C profiles showed two distinct types of sediment. One type was low in organic C, had high O2 and Eh, and had rates of denitrification 1,000 times lower than the other which had high organic C, low O2, and low Eh. Potential nitrification and denitrification rates were negatively correlated with Eh. This suggests that environmental heterogeneity in denitrifier and nitrifier populations in oligotrophic sediment systems may be assessed using Eh before sampling protocols for nitrification or denitrification rates are established. There was no correlation between denitrification and nitrification rates or between either of these processes and NH4 + or NO3 concentrations. The maximum rate of denitrification was 0.969 nmole N cm–3 hour–1, and the maximum rate of nitrification was 23.6 nmole cm–3 hour–1, suggesting nitrification does not limit denitrification in these oligotrophic sediments. Some sediment cores had mean concentrations of 6.0 mg O2/liter and still showed both nitrification and denitrification activity.  相似文献   

4.
Herein, a denitrifying bacterium that produced greenish fluorescent pigment under aerobic conditions was accidentally isolated from municipal sewage sludge. Using 16S-rDNA sequence analysis, we identified the isolate as Pseudomonas aeruginosa R12, with 100% similarity. We achieved the highest pigment production rate (1.36 mg/L/h) in a 1-L bioreactor under aerobic conditions, using the optimal culture parameters determined in this study: 37°C, pH 8.0, 200 rpm, 5 wm aeration, and medium containing succinate and (NH4)2SO4. The pigment was not a secondary metabolite and had no antibacterial activity on its co-isolates. Under anaerobic conditions, the isolate produced mainly N2 and behaved as a strong denitrifier, displaying synergistic denitrification with co-isolated denitrifiers. To our knowledge, herein we have described the first instance in which P. aeruginosa R12 produces a fluorescent pigment under aerobic conditions. This newly-isolated strain therefore shows potential as a commercial resource for natural pigment.  相似文献   

5.
Zhang  Huining  Wang  Hongyu  Yang  Kai  Sun  Yuchong  Tian  Jun  Lv  Bin 《Annals of microbiology》2015,65(2):1069-1078
A novel denitrifying bacterium was isolated using bicarbonate as the sole carbon source in a defined medium. Strain W3 was isolated from deep sediments of East Lake (Wuhan, China). In this study, analysis of 16S rRNA genes showed that strain W3 was affiliated with Microbacterium sp. When using Fe2+ as the only electron donor, this strain could convert 88.6 % of NO3 −-N to N2, corresponding to an Fe2+ oxidation rate of 80 %. Meanwhile, neither NO2 −-N nor NH4 +-N was accumulated after the experiment. In similar experiments with Fe(II)-EDTA, cell encrustations did not occur and supplementary substrates were consumed. The accumulated NO2 −-N was below 2.5 mg L−1. In addition, PCR revealed five kinds of key denitrifying genes: narG, napA, nirS, norB and nosZ. These results indicated that strain W3 could be used as an alternative autotrophic denitrifier for the treatment of groundwater and low C/N ratio wastewater.  相似文献   

6.
A strain D3 of denitrifying bacterium was isolated from an anammox reactor,and identi-fied as Pseudomonas mendocina based on the morphological and physiological assay,Vitek test,Biolog test,(G C) mol% content,and 16S rDNA phylogenetic analysis.As a typical denitrifying bac-terium,strain D3 achieved the maximal nitrate reduction rate of 26.2 mg/(L·d) at the nitrate concen-tration of 88.5 mg N/L.The optimal pH and growth temperature were 7.84 and 34.9℃,respectively.Strain D3 was able to oxidize ammonia under anaerobic condition.The maximum nitrate and ammo-nium utilization rates were 6.37 mg/(L·d) and 3.34 mg/(L·d) ,respectively,and the consumption ratio of ammonia to nitrate was 1:1.91.Electron microscopic observation revealed peculiar cell inclusions in strain D3.Because of its relation to anammox activity,strain D3 was presumed to be anammoxosome.The present investigation proved that denitrifying bacteria have the anammox ability,and the results have engorged the range of anammox populations.  相似文献   

7.
Persistence of Denitrifying Enzyme Activity in Dried Soils   总被引:8,自引:2,他引:6       下载免费PDF全文
The effects of air drying soil on denitrifying enzyme activity, denitrifier numbers, and rates of N gas loss from soil cores were measured. Only 29 and 16% of the initial denitrifying enzyme activity in fresh, near field capacity samples of Maury and Donerail soils, respectively, were lost after 7 days of air drying. The denitrifying activity of bacteria added to soil and activity recently formed in situ were not stable during drying. When dried and moist soil cores were irrigated, evolution of N gas began, and it maximized sooner in the dried cores. This suggests that the persistence of denitrifying enzymes permits accelerated denitrification when dried soils are remoistened. Enzyme activity increased significantly in these waterlogged cores, but fluctuations in enzyme activity were small compared with fluctuations in actual denitrification rate, and enzyme activities were always greater than denitrification rates. Apparent numbers of isolatable denitrifiers (most-probable-number counts) decreased more than enzyme activity as the soils were dried, but after the soils were rewetted, the extent of apparent growth was not consistently related to the magnitude of N loss. We hypothesize that activation-inactivation of existing enzymes by soil O2 is of greater significance in transient denitrification events than is growth of denitrifiers or synthesis of new enzymes.  相似文献   

8.
A strain D3 of denitrifying bacterium was isolated from an anammox reactor, and identified as Pseudomonas mendocina based on the morphological and physiological assay, Vitek test, Biolog test, (G+C) mol% content, and 16S rDNA phylogenetic analysis. As a typical denitrifying bacterium, strain D3 achieved the maximal nitrate reduction rate of 26.2 mg/(L·d) at the nitrate concentration of 88.5 mg N/L. The optimal pH and growth temperature were 7.84 and 34.9°C, respectively. Strain D3 was able to oxidize ammonia under anaerobic condition. The maximum nitrate and ammonium utilization rates were 6.37 mg/(L·d) and 3.34 mg/(L·d), respectively, and the consumption ratio of ammonia to nitrate was 1:1.91. Electron microscopic observation revealed peculiar cell in clusions in strain D3. Because of its relation to anammox activity, strain D3 was presumed to be anammoxosome. The present investigation proved that denitrifying bacteria have the anammox ability, and the results have engorged the range of anammox populations.  相似文献   

9.
Bacterial biofilters used in marine recirculation aquaculture systems need improvements to enhance nitrogen removal efficiency. Relatively little is known about biofilter autochthonous population structure and function. The present study was aimed at isolating and characterizing an autochthonous denitrifying bacterium from a marine biofilter installed at a recirculation aquaculture system. Colonization of four different media in a marine fish farm was followed by isolation of various denitrifying strains and molecular classification of the most promising one, strain T2, as a novel member of the Pseudomonas fluorescens cluster. This strain exhibits high metabolic versatility regarding N and C source utilization and environmental conditions for growth. It removed nitrate through aerobic assimilatory metabolism at a specific rate of 116.2 mg NO3-N g dw−1 h−1. Dissimilatory NO3-N removal was observed under oxic conditions at a limited rate, where transient NO2-N formed represented 22% (0.17 mg L−1) of the maximum transient NO2-N observed under anoxic conditions. Dissimilatory NO3-N removal under anoxic conditions occurred at a specific rate of 53.5 mg NO3-N g dw−1 h−1. The isolated denitrifying strain was able to colonize different materials, such as granular activated carbon (GAC), Filtralite and Bioflow plastic rings, which allow the development of a prototype bioreactor for strain characterization under dynamic conditions and mimicking fish-farm operating conditions.  相似文献   

10.
Two novel denitrifying alkalithermophilic bacteria, AT-1 and AT-2, were isolated from manure-amended soil. The isolates grew at 35–65°C with an optimum temperature at 50–60°C, and pH 6.5–10.0 with an optimum pH at 9.5. Both isolates were Gram-positive, facultative anaerobic, non-motile rod-shaped bacteria. A phylogenetic analysis based on 16S rRNA sequence data indicated that both AT-1 and AT-2 are members of the genus Anoxybacillus. DNA-DNA hybridization revealed moderate relatedness between AT-1 and AT-2 and one phylogenetically related strain, A. pushchinensis K1 (69.5 and 69.1%, respectively). Comparative analysis of morphology and biochemical characteristics of the two isolates also showed similarity to A. pushchinensis K1. Based on these results, we identified AT-1 and AT-2 as A. pushchinensis. To our knowledge, this is the first report of denitrifying bacterium isolated from alkalithermophilic Anoxybacillus spp.  相似文献   

11.
Land‐use practices aiming at increasing agro‐ecosystem sustainability, e.g. no‐till systems and use of temporary grasslands, have been developed in cropping areas, but their environmental benefits could be counterbalanced by increased N2O emissions produced, in particular during denitrification. Modelling denitrification in this context is thus of major importance. However, to what extent can changes in denitrification be predicted by representing the denitrifying community as a black box, i.e. without an adequate representation of the biological characteristics (abundance and composition) of this community, remains unclear. We analysed the effect of changes in land uses on denitrifiers for two different agricultural systems: (i) crop/grassland conversion and (ii) cessation/application of tillage. We surveyed potential denitrification (PD), the abundance and genetic structure of denitrifiers (nitrite reducers), and soil environmental conditions. N2O emissions were also measured during periods of several days on control plots. Time‐integrated N2O emissions and PD were well correlated among all control plots. Changes in PD were partly due to changes in denitrifier abundance but were not related to changes in the structure of the denitrifier community. Using multiple regression analysis, we showed that changes in PD were more related to changes in soil environmental conditions than in denitrifier abundance. Soil organic carbon explained 81% of the variance observed for PD at the crop/temporary grassland site, whereas soil organic carbon, water‐filled pore space and nitrate explained 92% of PD variance at the till/no‐till site, without any residual effect of denitrifier abundance. Soil environmental conditions influenced PD by modifying the specific activity of denitrifiers, and to a lesser extent by promoting a build‐up of denitrifiers. Our results show that an accurate simulation of carbon, oxygen and nitrate availability to denitrifiers is more important than an accurate simulation of denitrifier abundance and community structure to adequately understand and predict changes in PD in response to land‐use changes.  相似文献   

12.
The anaerobic degradation of tetradecylamine and other long-chain alkylamines by a newly isolated denitrifying bacterium was studied. Strain ZN6 was isolated from a mixture of soil and active sludge and was identified as representing Pseudomonas stutzeri, based on partial 16S rRNA gene sequence analysis. Strain ZN6 was a mesophilic, motile, Gram-negative rod-shaped bacterium and was able to grow on a variety of compounds including even-numbered primary fatty amines with alkyl chains ranging from C(4) to C(18) coupled to nitrate reduction. Alkylamines were used as sole carbon, energy and nitrogen source and were completely mineralized. Nitrate was dissimilated by ZN6 to nitrite. When strain ZN6 was grown under nitrate limitation, nitrite was slowly dissimilated further. When cocultivated with the complete denitrifier Castellaniella defragens ZN3, anaerobic degradation under denitrifying of alkylamines by strain ZN6 was slightly faster. Strain ZN3 is a complete denitrifier, unable to convert tetradecylamine, and was copurified from the same enrichment culture as strain ZN6. The proposed pathway for the degradation of alkylamines in strain ZN6 starts with C-N cleavages to alkanals and further oxidation to the corresponding fatty acids.  相似文献   

13.
The effects of pH on denitrifying enzyme activity (DEA) and on the ratio of the denitrification products, N2O and N2, were determined in three pasture soils differing in cattle impact. The linkage between intrinsic differences in the denitrifying communities and pH effects on relative N2O production was also assessed. Soil pH values were adjusted just before DEA determination to obtain soil slurries with a range of pH values. The intrinsic differences in the denitrifier communities were assessed by measuring the kinetic constants of NO3 and N2O reductions. DEA for all three soils was highest at pH 8.4, regardless of native soil pH. Because DEA has typically been measured at native soil pH, our results suggest that DEA might have been underestimated in many previous studies. Further, relative N2O production at different pH values did not differ among the soils, even though the denitrifier communities differed in their intrinsic capability to reduce NO3 all the way to N2, suggesting that the ratio of denitrification products (N2O and N2) is pH-specific rather than soil-specific. This suggests that manipulations of soil pH will alter N2O fluxes from agricultural soils.  相似文献   

14.
Temperature responses of denitrifying microbes likely play a governing role in the production and consumption of N2O. We investigated temperature effects on denitrifier communities and their potential to produce N2O and N2 by incubating grassland soils collected in multiple seasons at four temperatures with 15N-enriched NO3 ? for ~24 h. We quantified [N2O] concentration across time, estimated its production and reduction to N2, and quantified relative abundance of genes responsible for N2O production (cnorB) and reduction (nosZ). In all seasons, net N2O production was positively linked to incubation temperature, with highest estimates of net and gross N2O production in late spring soils. N2O dynamics were tightly coupled to changes in denitrifier community structure, which occurred on both seasonal and incubation time scales. We observed increases in nosZ abundance with increasing incubation temperature after 24 h, and relatively larger increases in cnorB abundance from winter to late June. The difference between incubation and in situ temperature was a robust predictor of cnorB:nosZ. These data provide convincing evidence that short-term increases in temperature can induce remarkably rapid changes in community structure that increase the potential for reduction of N2O to N2, and that seasonal adaptation of denitrifying communities is linked to seasonal changes in potential N2O production, with warmer seasons linked to large increases in N2O production potential. This work helps explain observations of high spatial and temporal variation in N2O effluxes, and highlights the importance of temperature as an influence on denitrification enzyme kinetics, denitrifier physiology and community adaptations, and associated N2O efflux and reduction.  相似文献   

15.
Summary Laboratory scale and pilot plant reactors were inoculated with an efficient denitrifier, Brachymonas denitrificans(CCUG 45880), in order to evaluate whether a bio-augmentation approach can be used to enhance biological nitrogen removal from tannery effluents. To determine the effectiveness of the introduced strain, denitrifying activity in the activated sludge was monitored by nitrate uptake rate (NUR) measurement of NO3-N. Fluorescent in situ hybridization (FISH) technique was used to monitor the growth of the augmented species. The laboratory scale nitrate removal efficiency with the introduced B. denitrificans (3.7±0.6 mg NO3-N gVSS −1 h −1) was higher than that of the activated sludge without the addition of the bacteria (3.5±0.7 mg NO3-N gVSS −1 h −1); the NUR in the pilot plant after and before the introduction of the strain was also of the magnitude of 12.0±1.4 and 10.6±1.4 mg NO3-N gVSS −1 day −1 , respectively. In situ hybridization results revealed that the introduced denitrifying bacteria significantly facilitated the development of a dense denitrifying bacterial population in the activated sludge, which enhanced in situ denitrification activity. FISH data indicated that once introduced, B. denitrificans remained abundant throughout the experimental period. The ability to seed a bioreactor with bacterial strain capable of removing target pollutants from tannery effluents in a mixed microbial community suggests that this approach could have commercial applications.  相似文献   

16.
In contrast to most denitrifiers studied so far, Pseudomonas stutzeri TR2 produces low levels of nitrous oxide (N2O) even under aerobic conditions. We compared the denitrification activity of strain TR2 with those of various denitrifiers in an artificial medium that was derived from piggery wastewater. Strain TR2 exhibited strong denitrification activity and produced little N2O under all conditions tested. Its growth rate under denitrifying conditions was near comparable to that under aerobic conditions, showing a sharp contrast to the lower growth rates of other denitrifiers under denitrifying conditions. Strain TR2 was tolerant to toxic nitrite, even utilizing it as a good denitrification substrate. When both nitrite and N2O were present, strain TR2 reduced N2O in preference to nitrite as the denitrification substrate. This bacterial strain was readily able to adapt to denitrifying conditions by expressing the denitrification genes for cytochrome cd1 nitrite reductase (NiR) (nirS) and nitrous oxide reductase (NoS) (nosZ). Interestingly, nosZ was constitutively expressed even under nondenitrifying, aerobic conditions, consistent with our finding that strain TR2 preferred N2O to nitrite. These properties of strain TR2 concerning denitrification are in sharp contrast to those of well-characterized denitrifiers. These results demonstrate that some bacterial species, such as strain TR2, have adopted a strategy for survival by preferring denitrification to oxygen respiration. The bacterium was also shown to contain the potential to reduce N2O emissions when applied to sewage disposal fields.Wastewater treatment processes produce one of the major greenhouse effect gases, nitrous oxide (N2O) (7, 25, 30). The global warming potential of N2O relative to that of carbon dioxide (CO2) is 298 for a 100-year time horizon, and its concentration in the atmosphere continues to increase by about 0.26% per year (9). Nitrogen removal in wastewater treatment plants is essentially based on the activities of nitrifying and denitrifying microorganisms, both of which are inhabitants of activated sludge. Nitrifying bacteria aerobically oxidize ammonium to nitrite (NO2) and nitrate (NO3), which are then reduced anaerobically by denitrifying bacteria to gaseous nitrogen forms, such as N2O and dinitrogen (N2). It has long been known that N2O can be produced during both nitrification and denitrification processes of wastewater treatment (3, 19, 23), but the cause of N2O emission during the nitrification process was not clear. We recently showed, however, using activated sludge grown under conditions that mimicked a piggery wastewater disposal, that N2O emission during the nitrification process depends on denitrification by ammonia-oxidizing bacteria (Nitrosomonas) (18). On the other hand, it is believed that denitrifying bacteria produce N2O as a by-product when anaerobiosis is insufficient during the denitrification process, because N2O reductase is the enzyme that is most sensitive to oxygen (6). Piggery wastewater, in particular, contains a high concentration of ammonia, and N2O emission tends to take place during the nitrogen removal process (5, 10). Experiments on the removal of ammonia and organic carbon by the aerobic denitrifier Pseudomonas stutzeri SU2 (24) and the heterotrophic nitrifier-aerobic denitrifier Alcaligenes faecalis no. 4 (16, 17) have been reported as examples of bioaugmentation in piggery wastewater treatment. Reduction of N2O emissions from pig manure compost by addition of nitrite-oxidizing bacteria has also been reported (11). However, there have been no reports of methods for reducing N2O emissions by bioaugmentation using aerobic denitrifying bacteria.Takaya et al. isolated the aerobic denitrifying bacterium Pseudomonas stutzeri TR2 (26). The denitrification activity of strain TR2 was monitored in batch and continuous cultures, using denitrification and artificial wastewater media, and the strain was found to keep a distinct activity (producing N2 from NO3) and to produce a very low level of N2O at a dissolved oxygen (O2) concentration of 1.25 mg liter−1. Therefore, strain TR2 should be useful in the future for reducing N2O emissions from wastewater treatment plants by bioaugmentation. To investigate the feasibility of using strain TR2 for future application to wastewater treatment processes, we examined its denitrification activity, N2O production, growth rate, and expression of denitrifying genes in batch cultures, using a medium that mimics the composition found in nitrogen removal wastewater plants. Comparison of the properties of strain TR2 with those of well-characterized denitrifying bacteria revealed characteristics of the strain that favor denitrification, although it can also respire oxygen.  相似文献   

17.
Two novel denitrifying bacteria were successfully isolated from industrial wastewater and soil samples. Using morphological, biochemical/biophysical and 16S rRNA gene analyses, these two bacteria were identified as Stenotrophomonas sp. ZZ15 and Oceanimonas sp. YC13, respectively. Both of these two bacteria showed efficient NO3 -N removing abilities under a semi-anaerobic condition without obvious accumulation of NO2 -N, N2O-N and NH4 +-N. NO3 -N removal from paper mill wastewater was also successful by treatments with either a denitrifier or an immobilization method. Therefore, this study provides valuable denitrifying bacteria in biotreatment of industrial wastewater and other environmental pollution caused by NO3 /NO2 .  相似文献   

18.
An evolutionary algorithm was applied to study the complex interactions between medium parameters and their effects on the isolation of denitrifying bacteria, both in number and in diversity. Growth media with a pH of 7 and a nitrogen concentration of 3 mM, supplemented with 1 ml of vitamin solution but not with sodium chloride or riboflavin, were the most successful for the isolation of denitrifiers from activated sludge. The use of ethanol or succinate as a carbon source and a molar C/N ratio of 2.5, 20, or 25 were also favorable. After testing of 60 different medium parameter combinations and comparison with each other as well as with the standard medium Trypticase soy agar supplemented with nitrate, three growth media were highly suitable for the cultivation of denitrifying bacteria. All evaluated isolation conditions were used to study the cultivable denitrifier diversity of activated sludge from a municipal wastewater treatment plant. One hundred ninety-nine denitrifiers were isolated, the majority of which belonged to the Betaproteobacteria (50.4%) and the Alphaproteobacteria (36.8%). Representatives of Gammaproteobacteria (5.6%), Epsilonproteobacteria (2%), and Firmicutes (4%) and one isolate of the Bacteroidetes were also found. This study revealed a much more diverse denitrifying community than that previously described in cultivation-dependent research on activated sludge.  相似文献   

19.
吴芳芳  郑有飞  吴荣军  王锦旗  李萍 《生态学报》2014,34(20):5840-5848
为研究臭氧浓度升高和太阳辐射减弱复合背景下,麦田土壤反硝化作用及N2O排放的变化,采用开顶箱(OTC)法和遮光网技术,设置3个臭氧浓度梯度及3个辐射减弱梯度,连续4a对小麦生长季麦田土壤进行臭氧浓度增加太阳辐射减弱以及它们的复合作用的试验。采用MPN(最大或然数)法测定反硝细菌的数量,用气相色谱法测定反硝化强度。结果显示反硝化细菌数量和反硝化强度受小麦生长发育的影响,在小麦成熟期收割后土壤反硝化细菌数量和反硝化强度增加得特别明显。O3连续作用3个生长季后,以及太阳辐射减弱处理,土壤反硝化菌和反硝化强度显著升高,N2O排放量显著增加。减弱的太阳辐射与增加的O3复合作用,在小麦的每个生育期均显著促进了反硝化菌数量增加和反硝化强度增强,促进率显著高于O3和遮荫的单独作用。结果说明,O3浓度增加以及太阳辐射减弱对土壤反硝化菌和反硝化强度均有一定的促进作用,减弱的太阳辐射与高浓度的O3两因素之间存在协作关系,太阳辐射减弱有利O3的吸收,增加O3伤害,促进反硝化过程。  相似文献   

20.
Denitrification is an important microbial process in soils and leads to the emission of nitrous oxide (N2O). However, studies about the microbial community involved in denitrification processes in polluted paddy fields are scarce. Here, we studied two rice paddies which had been polluted for more than three decades by metal mining and smelter activities. Abundance and community composition were determined using real-time polymerase chain reaction (PCR) assay and denaturing gradient gel electrophoresis of nitrite reductase and nitrous oxide reductase gene amplicons (nirK and nosZ), while denitrifying activities were assessed by measuring potential denitrifier enzyme activity. We found that the community structure of both nirK and nosZ containing denitrifiers shifted under pollution in the two rice paddies. All the retrieved nirK sequences did not group into either α- or β-proteobacteria, while most of the nosZ species were affiliated with α-proteobacteria. While the abundance of both nirK and nosZ was significantly reduced in the polluted soils at “Dexing” (with relatively higher Cu levels), these parameters did not change significantly at “Dabaoshan” (polluted with Cd, Pb, Cu, and Zn). Furthermore, total denitrifying activity and N2O production and reduction rates also only decreased under pollution at “Dexing.” These findings suggest that nirK and nosZ containing denitrifier populations and their activities could be sensitive to considerable Cu pollution, which could potentially affect N2O release from polluted paddy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号