首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The yeast protein Ebp2 is required for early steps in production of 60S ribosomal subunits. To search for cofactors with which Ebp2 functions, or substrates on which it acts, we screened for mutants that were synthetically lethal (sl) with the ebp2-14 mutation. Four different mutant alleles of the 60S ribosomal subunit assembly factor Brx1 were found. To investigate defects of the double mutant, we constructed strains conditional for the ebp2-14 brx1- synthetic lethal phenotype. These ebp2-14 brx1 mutants were defective in processing of 27S pre-rRNA and production of 60S subunits, under conditions where each single mutant was not. Ebp2 and Brx1 exhibit a strong two-hybrid interaction, which is eliminated by some combinations of brx1 and ebp2 mutations. In one such mutant, Ebp2 and Brx1 can still associate with pre-ribosomes, but subunit maturation is perturbed. Depletion of either Ebp2 or Brx1 revealed that Brx1 requires Ebp2 for its stable association with pre-ribosomes, but Ebp2 does not depend on the presence of Brx1 to enter pre-ribosomes. These results suggest that assembly of 60S ribosomal subunits requires cooperation of Ebp2 with Brx1, together with other molecules present in pre-ribosomes, potentially including several found in assembly subcomplexes with Brx1 and Ebp2.  相似文献   

3.
Ebp2p, the yeast homolog of human Epstein-Barr virus nuclear antigen 1-binding protein 2, is essential for biogenesis of the 60 S ribosomal subunit. Two-hybrid screening exhibited that, in addition to factors necessary for assembly of the 60 S subunit, Ebp2p interacts with Rps16p, ribosomal protein S16, and the 40 S ribosomal subunit assembly factor, Utp11p, as well as Yil019w, the function of which was previously uncharacterized. Depletion of Yil019w resulted in reduction in levels of both of 18 S rRNA and 40 S ribosomal subunit without affecting levels of 25 S rRNA and 60 S ribosomal subunits. 35 S pre-rRNA and aberrant 23 S RNA accumulated, indicating that pre-rRNA processing at sites A(0)-A(2) is inhibited when Yil019w is depleted. Each combination from Yil019w, Utp11p, and Rps16p showed two-hybrid interaction.  相似文献   

4.
Ebp2p is essential for the assembly of 60S ribosomal subunits, and it interacts with other ribosome assembly factors in Saccharomyces cerevisiae. Two-hybrid screening exhibited that Ebp2p interacted with a small ubiquitin-related modifier (SUMO)-ligase Siz2p and SUMO-related proteins, Ris1p and Wss1p. Mutations of SUMO attachment sites of Ebp2p led to significantly weak interactions with Siz2p, Wss1p, and Ris1p, whereas they exhibited positive interactions with ribosome assembly factors. A SUMO-binding motif of Ris1p was required for interaction with Ebp2p. These results suggest that SUMO mediates the interaction between Ebp2p and SUMO related proteins and that Ebp2p switches its interaction partners via sumoylation.  相似文献   

5.
Ribosomes are the molecular machines that translate mRNAs into proteins. The synthesis of ribosomes is therefore a fundamental cellular process and consists in the ordered assembly of 79 ribosomal proteins (r-proteins) and four ribosomal RNAs (rRNAs) into a small 40S and a large 60S ribosomal subunit that form the translating 80S ribosomes. Most of our knowledge concerning this dynamic multi-step process comes from studies with the yeast Saccharomyces cerevisiae, which have shown that assembly and maturation of pre-ribosomal particles, as they travel from the nucleolus to the cytoplasm, relies on a multitude (>200) of biogenesis factors. Amongst these are many energy-consuming enzymes, including 19 ATP-dependent RNA helicases and three AAA-ATPases. We have previously shown that the AAA-ATPase Rix7 promotes the release of the essential biogenesis factor Nsa1 from late nucleolar pre-60S particles. Here we show that mutant alleles of genes encoding the DEAD-box RNA helicase Mak5, the C/D-box snoRNP component Nop1 and the rRNA-binding protein Nop4 bypass the requirement for Nsa1. Interestingly, dominant-negative alleles of RIX7 retain their phenotype in the absence of Nsa1, suggesting that Rix7 may have additional nuclear substrates besides Nsa1. Mak5 is associated with the Nsa1 pre-60S particle and synthetic lethal screens with mak5 alleles identified the r-protein Rpl14 and the 60S biogenesis factors Ebp2, Nop16 and Rpf1, which are genetically linked amongst each other. We propose that these ’Mak5 cluster’ factors orchestrate the structural arrangement of a eukaryote-specific 60S subunit surface composed of Rpl6, Rpl14 and Rpl16 and rRNA expansion segments ES7L and ES39L. Finally, over-expression of Rix7 negatively affects growth of mak5 and ebp2 mutant cells both in the absence and presence of Nsa1, suggesting that Rix7, at least when excessively abundant, may act on structurally defective pre-60S subunits and may subject these to degradation.  相似文献   

6.
We report the characterization of a novel factor, Rsa4p (Ycr072cp), which is essential for the synthesis of 60S ribosomal subunits. Rsa4p is a conserved WD-repeat protein that seems to localize in the nucleolus. In vivo depletion of Rsa4p results in a deficit of 60S ribosomal subunits and the appearance of half-mer polysomes. Northern hybridization and primer extension analyses of pre-rRNA and mature rRNAs show that depletion of Rsa4p leads to the accumulation of the 27S, 25.5S and 7S pre-rRNAs, resulting in a reduction of the mature 25S and 5.8S rRNAs. Pulse–chase analyses of pre-rRNA processing reveal that, at least, this is due to a strong delay in the maturation of 27S pre-rRNA intermediates to mature 25S rRNA. Furthermore, depletion of Rsa4p inhibited the release of the pre-60S ribosomal particles from the nucleolus to the nucleoplasm, as judged by the predominantly nucleolar accumulation of the large subunit Rpl25-eGFP reporter construct. We propose that Rsa4p associates early with pre-60S ribosomal particles and provides a platform of interaction for correct processing of rRNA precursors and nucleolar release of 60S ribosomal subunits.  相似文献   

7.
Ebp2p is essential for the assembly of 60S ribosomal subunits, and it interacts with other ribosome assembly factors in Saccharomyces cerevisiae. Two-hybrid screening exhibited that Ebp2p interacted with a small ubiquitin-related modifier (SUMO)-ligase Siz2p and SUMO-related proteins, Ris1p and Wss1p. Mutations of SUMO attachment sites of Ebp2p led to significantly weak interactions with Siz2p, Wss1p, and Ris1p, whereas they exhibited positive interactions with ribosome assembly factors. A SUMO-binding motif of Ris1p was required for interaction with Ebp2p. These results suggest that SUMO mediates the interaction between Ebp2p and SUMO related proteins and that Ebp2p switches its interaction partners via sumoylation.  相似文献   

8.
We previously cloned RRP14/YKL082c, whose product exhibits two-hybrid interaction with Ebp2p, a regulatory factor of assembly of 60S ribosomal subunits. Depletion of Rrp14p results in shortage of 60S ribosomal subunits and retardation of processing from 27S pre-rRNA to 25S rRNA. Furthermore, 35S pre-rRNA synthesis appears to decline in Rrp14p-depleted cells. Rrp14p interacts with regulatory factors of 60S subunit assembly and also with Utp11p and Faf1p, which are regulatory factors required for assembly of 40S ribosomal subunits. We propose that Rrp14p is involved in ribosome synthesis from the beginning of 35S pre-rRNA synthesis to assembly of the 60S ribosomal subunit. Disruption of RRP14 causes an extremely slow growth rate of the cell, a severe defect in ribosome synthesis, and a depolarized localization of cortical actin patches throughout the cell cycle. These results suggest that Rrp14p has dual functions in ribosome synthesis and polarized cell growth.  相似文献   

9.
Loc1p is an exclusively nuclear dsRNA-binding protein that affects the asymmetric sorting of ASH1 mRNA to daughter cells in Saccharomyces cerevisiae. In addition to the role in cytoplasmic RNA localization, Loc1p is a constituent of pre-60S ribosomes. Cells devoid of Loc1p display a defect in the synthesis of 60S ribosomal subunits, resulting in “half-mer” polyribosomes. Previously, we reported that Loc1p is located throughout the entire nucleus; however, upon closer inspection we discovered that Loc1p is enriched in the nucleolus consistent with a role in 60S ribosome biogenesis. Given that Loc1p is an RNA-binding protein and presumably functions in the assembly of 60S ribosomal subunits, we investigated if Loc1p has a role in rRNA processing and nuclear export of 60S subunits. Analysis of pre-rRNA processing revealed that loc1Δ cells exhibit gross defects in 25S rRNA synthesis, specifically a delay in processing at sites A0, A1 and A2 in 35S pre-rRNA. Furthermore, loc1Δ cells exhibit nuclear export defects for 60S ribosomal subunits, again, consistent with a role for Loc1p in the assembly of 60S ribosomal subunits. It is attractive to hypothesize that the two phenotypes associated with loc1Δ cells, namely altered ASH1 mRNA localization and ribosome biogenesis, are not mutually exclusive, but that ribosome biogenesis directly impacts mRNA localization.  相似文献   

10.
In eukaryotes, nuclear export of the large (60S) ribosomal subunit requires the adapter protein Nmd3p to provide the nuclear export signal. Here, we show that in yeast release of Nmd3p from 60S subunits in the cytoplasm requires the ribosomal protein Rpl10p and the G-protein, Lsg1p. Mutations in LSG1 or RPL10 blocked Nmd3-GFP shuttling into the nucleus and export of pre-60S subunits from the nucleus. Overexpression of NMD3 alleviated the export defect, indicating that the block in 60S export in lsg1 and rpl10 mutants results indirectly from failing to recycle Nmd3p. The defect in Nmd3p recycling and the block in 60S export in both lsg1 and rpl10 mutants was also suppressed by mutant Nmd3 proteins that showed reduced binding to 60S subunits in vitro. We propose that the correct loading of Rpl10p into 60S subunits is required for the release of Nmd3p from subunits by Lsg1p. These results suggest a coupling between recycling the 60S export adapter and activation of 60S subunits for translation.  相似文献   

11.
The human EBP2 protein was found by two-hybrid analysis to interact with the Epstein-Barr virus nuclear antigen 1 (EBNA1). Homologs of human EBP2 can be found in Caenorhabditis elegans, Schizosaccharomyces pombe, and in Saccharomyces cerevisiae, and they all share a conserved 200-300-amino acid block of residues at their C termini. To understand the cellular function of EBP2, we have begun to study the protein in S. cerevisiae. The yeast Ebp2 protein contains N-terminal, nucleolar-associated KKE motifs, and deletion analysis reveals that the C-terminal conserved region is required for the activity of the protein. The EBP2 gene codes for an essential protein that localizes to the nucleolus. Temperature-sensitive ebp2-1 mutants become depleted of ribosomes and cease to divide after several generations at the restrictive temperature of 36 degrees C. This decline in ribosome levels is accompanied by a diminution in the levels of the 35 S-derived recombinant RNAs (rRNAs) (in particular the 25 S and 5.8 S rRNAs). Pulse-chase, Northern, and primer extension analysis of the rRNA biosynthetic pathway indicates that ebp2-1 mutants are defective in processing the 27 SA precursor into the 27 SB pre-rRNA.  相似文献   

12.
13.
To identify new gene products that participate in ribosome biogenesis, we carried out a screen for mutations that result in lethality in combination with mutations in DRS1, a Saccharomyces cerevisiae nucleolar DEAD-box protein required for synthesis of 60S ribosomal subunits. We identified the gene NOP7that encodes an essential protein. The temperature-sensitive nop7-1 mutation or metabolic depletion of Nop7p results in a deficiency of 60S ribosomal subunits and accumulation of halfmer polyribosomes. Analysis of pre-rRNA processing indicates that nop7 mutants exhibit a delay in processing of 27S pre-rRNA to mature 25S rRNA and decreased accumulation of 25S rRNA. Thus Nop7p, like Drs1p, is required for essential steps leading to synthesis of 60S ribosomal subunits. In addition, inactivation or depletion of Nop7p also affects processing at the A0, A1, and A2 sites, which may result from the association of Nop7p with 35S pre-rRNA in 90S pre-rRNPs. Nop7p is localized primarily in the nucleolus, where most steps in ribosome assembly occur. Nop7p is homologous to the zebrafish pescadillo protein necessary for embryonic development. The Nop7 protein contains the BRCT motif, a protein-protein interaction domain through which, for example, the human BRCA1 protein interacts with RNA helicase A.  相似文献   

14.
In this study, we show that the Saccharomyces cerevisiae ORF YBR142w, which encodes a putative DEAD-box RNA helicase, corresponds to MAK5. The mak5-1 allele is deficient in the maintenance of the M1 dsRNA virus, resulting in a killer minus phenotype. This allele carries two mutations, G218D in the conserved ATPase A-motif and P618S in a non-conserved region. We have separated these mutations and shown that it is the G218D mutation that is responsible for the killer minus phenotype. Mak5p is an essential nucleolar protein; depletion of the protein leads to a reduction in the level of 60S ribosomal subunits, the appearance of half-mer polysomes, and a delay in production of the mature 25S and 5.8S rRNAs. Thus, Mak5p is involved in the biogenesis of 60S ribosomal subunits.Communicated by F. Messenguy  相似文献   

15.
16.
Rrs1p, a ribosomal protein L11-binding protein, has an essential role in biogenesis of 60S ribosomal subunits. We obtained conditionally synthetic lethal allele with the rrs1-5 mutation and determined that the mutation is in REX1, which encodes an exonuclease. The highly conserved leucine at 305 was substituted with tryptophan in rex1-1. The rex1-1 allele resulted in 3′-extended 5S rRNA. Polysome analysis revealed that rex1-1 and rrs1-5 caused a synergistic defect in the assembly of 60S ribosomal subunits. In vivo and in vitro binding assays indicate that Rrs1p interacts with the ribosomal protein L5–5S rRNA complex. The rrs1-5 mutation weakens the interaction between Rrs1p with both L5 and L11. These data suggest that the assembly of L5–5S rRNA on 60S ribosomal subunits coordinates with assembly of L11 via Rrs1p.  相似文献   

17.
Mrp2 is a protein component of the small subunit of mitochondrial ribosomes in the yeast Saccharomyces cerevisiae. We have examined the expression of Mrp2 in yeast mutants lacking mitochondrial DNA and found that the steady-state level of Mrp2 is dramatically decreased relative to wild type. These data suggest that the accumulation of Mrp2 depends on the expression of one or more mitochondrial gene products. The mitochondrial genome of S. cerevisiae encodes two components of the small ribosomal subunit, 15S rRNA and the Var1 protein, both of which are necessary for the formation of mature 37S subunits. Several studies have shown that in the absence of Var1 incomplete subunits accumulate, which lack a limited number of ribosomal proteins. Here, we show that Mrp2 is one of the proteins absent from subunits lacking Var1, indicating that Var1 plays an important role in the incorporation of Mrp2 into mitochondrial ribosomal subunits.  相似文献   

18.
The Saccharomyces cerevisiae gene RRP1 encodes an essential, evolutionarily conserved protein necessary for biogenesis of 60S ribosomal subunits. Processing of 27S pre-ribosomal RNA to mature 25S rRNA is blocked and 60S subunits are deficient in the temperature-sensitive rrp1-1 mutant. We have used recent advances in proteomic analysis to examine in more detail the function of Rrp1p in ribosome biogenesis. We show that Rrp1p is a nucleolar protein associated with several distinct 66S pre-ribosomal particles. These pre-ribosomes contain ribosomal proteins plus at least 28 nonribosomal proteins necessary for production of 60S ribosomal subunits. Inactivation of Rrp1p inhibits processing of 27SA(3) to 27SB(S) pre-rRNA and of 27SB pre-rRNA to 7S plus 25.5S pre-rRNA. Thus, in the rrp1-1 mutant, 66S pre-ribosomal particles accumulate that contain 27SA(3) and 27SB(L) pre-ribosomal RNAs.  相似文献   

19.
Molecular mechanisms of mammalian ribosome biogenesis remain largely unexplored. Here we develop a series of transposon-derived dominant mutants of Pes1, the mouse homolog of the zebrafish Pescadillo and yeast Nop7p implicated in ribosome biogenesis and cell proliferation control. Six Pes1 mutants selected by their ability to reversibly arrest the cell cycle also impair maturation of the 28S and 5.8S rRNAs in mouse cells. We show that Pes1 physically interacts with the nucleolar protein Bop1, and both proteins direct common pre-rRNA processing steps. Interaction with Bop1 is essential for the efficient incorporation of Pes1 into nucleolar preribosomal complexes. Pes1 mutants defective for the interaction with Bop1 lose the ability to affect rRNA maturation and the cell cycle. These data show that coordinated action of Pes1 and Bop1 is necessary for the biogenesis of 60S ribosomal subunits.  相似文献   

20.
Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing   总被引:9,自引:0,他引:9  
The p19(Arf) tumor suppressor, a nucleolar protein, binds to Mdm2 to induce p53-dependent cell cycle arrest. Arf also prevents the proliferation of cells lacking Mdm2 and p53, albeit less efficiently. We show that p19(Arf) inhibits production of ribosomal RNA, retarding processing of 47/45S and 32S precursors. These effects correlate with but do not strictly depend upon inhibition of rRNA biosynthesis or cell cycle arrest, are not mimicked by p53, and require neither p53 nor Mdm2. Arf mutants lacking conserved amino acid residues 2-14 do not block rRNA synthesis and processing or inhibit cell proliferation. Evolution may have linked a primordial nucleolar Arf function to Mdm2 and p53, creating a more efficient checkpoint-signaling pathway for coordinating ribosomal biogenesis and cell cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号