首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary An -glucosidase was purified from Aspergillus carbonarious CCRC 30414 over 20 fold with 37 % recovery. Its molecular mass was estimated to be 328 kDa by gel filtration with an optimum pH from 4.2 to 5.0, and pI=5.0. The optimum temperature is at 60°C over 40 min. The enzyme was partially inhibited by 5 mM Ag+, Hg2+, Ba2+, Pb2+, and Aso4 +.  相似文献   

3.
Aspergillus flavus produced approximately 50 U/mL of amylolytic activity when grown in liquid medium with raw low-grade tapioca starch as substrate. Electrophoretic analysis of the culture filtrate showed the presence of only one amylolytic enzyme, identified as an α-amylase as evidenced by (i) rapid loss of color in iodine-stained starch and (ii) production of a mixture of glucose, maltose, maltotriose and maltotetraose as starch digestion products. The enzyme was purified by ammonium sulfate precipitation and ion-exchange chromatography and was found to be homogeneous on sodium dodecyl sulfate— polyacrylamide gel electrophoresis. The purified enzyme had a molar mass of 52.5±2.5 kDa with an isoelectric point at pH 3.5. The enzyme was found to have maximum activity at pH 6.0 and was stable in a pH range from 5.0 to 8.5. The optimum temperature for the enzyme was 55°C and it was stable for 1 h up to 50°C. TheK m andV for gelatinized tapioca starch were 0.5 g/L and 108.67 μmol reducing sugars per mg protein per min, respectively.  相似文献   

4.
A β-fructofuranosidase (EC 3.2.1.26) was purified to homogeneity from Aspergillus japonicus TIT-KJ1. The enyme had an optimum pH for activity of 5.4 and pH stability at 7.0–8.4. The optimum temperature at pH 5.4 was 60°C. The enzyme had a molecular weight of 236,000 with two subunits and an isoelectric point of pH 4.0. The enzyme was inactivated by 5 mM Hg2 + and Ag+. The enzyme had a high transfructosylating activity. Treatment of 50% (w/v) sucrose with the enzyme under optimum conditions afforded more than 55% fructooligosaccharides.  相似文献   

5.
A β-xylosidase (β-d-xyloside xylohydrolase, EC 3.2.1.37) and β-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) extracted from a wheat bran culture of Aspergillus fumigatus were purified up to 90-fold and 131-fold, respectively, by ammonium sulfate precipitation, gel filtration, ion exchange chromatography, and hydroxylapatite chromatography. Molecular weights of the β-xylosidase and β-glucosidase were 360,000 and 380,000, respectively, each consisting of four identical subunits. The isoelectric points of β-xylosidase and β-glucosidase were at pH 5.4 and 4.5, respectively. The optimum temperature for the β-xylosidase was 75°C, being stable up to 65°C for 20 min and for the β-glucosidase was 65°C, being stable up to 60°C for 20 min. The optimum pH for both enzymes was about 4.5, being stable between 2 and 8 at 50°C for 20 min. Both enzymes were inhibited by Fe3+, Cu2+, Hg2+, SDS, and p-chloromercuribenzoate. The apparent Michaelis constants of the β-xylosidase were 2.0 and 23.8 mM for p-nitrophenyl-β-xyloside and xylobiose, respectively, and those of the β-glucosidase were 1.4, 11.4, and 24.8 mM for p-nitrophenyl-β-glucoside, gentiobiose, and cellobiose, respectively. To produce xylose from crude xylooligosac-charides prepared by steam-explosion of cotton seed waste (DP ≤10, 53%, total sugars = 150 g/ liter), the crude enzyme from A. fumigatus (β-xylosidase activity = 14.7 units/ml, xylanase activity = 20 units/ml) could hydrolyze the substrate at 55°C and pH 4.5 resulting in almost complete conversion to xylose (160 g/liter).  相似文献   

6.
The production of an extracellular -D-xylosidase (-D-xyloside xylohydrolase, EC 3.2.1.37) by four Aspergillus strains (A. carbonarius, A. nidulans, A. niger and A. oryzae) grown on wheat bran medium was compared. The highest amount of the enzyme was found in the culture of A. carbonarius. The -D-xylosidase from A. carbonarius was purified to homogeneity by a rapid procedure, using hydrophobic interaction chromatography, chromatofocusing and affinity chromatography. The purified enzyme possessed not only -D-xylosidase activity, but also -L-arabinosidase activity. Mixed substrate experiments revealed that a single active centre was responsible for the splitting of the corresponding synthetic substrates. The molecular weight of the purified enzyme proved to be 100,000 Da, as estimated by SDS–PAGE. The isoelectric point was at pH 4.4. The pH and temperature optima were 4.0 and 60 °C, respectively. The enzyme remained stable over a pH range of 3.5–6.5 and up to 50 °C for 30 min. The Michaelis constant for p-nitrophenyl -D-xyloside was 0.198 mM. Kinetic studies demonstrated that the lack of the C-5 hydroxylmethyl group and the configuration of the C-4 hydroxyl group on the pyranoside ring play an important role in both substrate binding and splitting.  相似文献   

7.
An extracellular α-glucosidase produced by Aspergillus niveus was purified using DEAE-Fractogel ion-exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5% PAGE and 10% SDS–PAGE. The enzyme presented 29% of glycosylation, an isoelectric point of 6.8 and a molecular weight of 56 and 52 kDa as estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The enzyme showed typical α-glucosidase activity, hydrolyzing p-nitrophenyl α-d-glucopyranoside and presented an optimum temperature and pH of 65°C and 6.0, respectively. In the absence of substrate the purified α-glucosidase was stable for 60 min at 60°C, presenting t 50 of 90 min at 65°C. Hydrolysis of polysaccharide substrates by α-glucosidase decreased in the order of glycogen, amylose, starch and amylopectin. Among malto-oligosaccharides the enzyme preferentially hydrolyzed malto-oligosaccharide (G10), maltopentaose, maltotetraose, maltotriose and maltose. Isomaltose, trehalose and β-ciclodextrin were poor substrates, and sucrose and α-ciclodextrin were not hydrolyzed. After 2 h incubation, the products of starch hydrolysis measured by HPLC and thin layer chromatography showed only glucose. Mass spectrometry of tryptic peptides revealed peptide sequences similar to glucan 1,4-alpha-glucosidases from Aspergillus fumigatus, and Hypocrea jecorina. Analysis of the circular dichroism spectrum predicted an α-helical content of 31% and a β-sheet content of 16%, which is in agreement with values derived from analysis of the crystal structure of the H. jecorina enzyme.  相似文献   

8.
Four inhibitors of α-amylase (EC 3.2.1.1) were separated from an alcohol extract of wheat by ion-change chromatography on DE52-cellulose. One inhibitor, which showed the greatest specificity for human salivary amylase relative to human pancreatic amylase, has been purified by the following steps: (a) alcohol fractionation (60–90%) of water extract (b) ion-exchange chromatography on QAE-Sephadex A-50; (c) re-chromatography on DE52-cellulose and (d) gel filtration on Sephadex G-50. The purified inhibitor is 100 times more specific for human salivary amylase than for human pancreatic amylase. It shows an electrophoretic mobility of 0.2 on disc gel electrophoresis and a molecular weight of about 21 000. This inhibitor contributes about 16% to the total salivary amylase inhibiting power of the wheat extract.  相似文献   

9.
NADH-dependent soluble l-α-hydroxyglutarate dehydrogenase (l-2-hydroxyglutarate: NAD+ 2-oxidoreductase) was found in a bacterium belonging to the genus Alcaligenes obtained from soil by citrate enrichment culture. A mutant with about 2.5-fold higher activity of the enzyme was derived from the bacterium and used as the enzyme source. High level of the enzyme was produced at the late stage of cultivation in the presence of citrate and with limited aeration. The enzyme was purified from the cells to homogeneity to give crystals, and its enzymatic properties were studied. The enzyme strongly reduced α-ketoglutarate to stereochemically pure l-α-hydroxyglutarate with NADH as a coenzyme, but it oxidized d-α-hydroxyglutarate with about 1/10 of the rate for l-form oxidation.  相似文献   

10.
An α-mannosidase was purified from developing Ginkgo biloba seeds to apparently homogeneity. The molecular weight of the purified α-mannosidase was estimated to be 120 kDa by SDS–PAGE in the presence of 2-mercaptoethanol, and 340 kDa by gel filtration, indicating that Ginkgo α-mannosidase may function in oligomeric structures in the plant cell. The N-terminal amino acid sequence of the purified enzyme was Ala–Phe–Met–Lys–Tyr–X–Thr–Thr–Gly–Gly–Pro–Val–Ala–Gly–Lys–Ile–Asn–Val–His–Leu–. The α-mannosidase activity for Man5GlcNAc1 was enhanced by the addition of Co2+, but the addition of Zn2+, Ca2+, or EDTA did not show any significant effect. In the presence of cobalt ions, the hydrolysis rate for pyridylaminated Man6GlcNAc1 was significantly faster than that for pyridylaminated Man6GlcNAc2, suggesting the possibility that this enzyme is involved in the degradation of free N-glycans occurring in developing plant cells (Kimura, Y., and Matsuo, S., J. Biochem., 127, 1013–1019 (2000)). To our knowledge, this is the first report showing that plant cells contain an α-mannosidase, which is activated by Co2+ and prefers the oligomannose type free N-glycans bearing only one GlcNAc residue as substrate.  相似文献   

11.
Abstract

Aspergillus flavus has been regarded as a potential candidate for its production of industrial enzymes, but the details of β-glucosidase from this strain is very limited. In herein, we first reported a novel β-glucosidase (AfBglA) with the molecular mass of 94.2?kDa from A. flavus. AfBglA was optimally active at pH 4.5 and 60?°C and is stable between pH 3.5 and 9.0 and at a temperature of up to 55?°C for 30?min remaining more than 90% of its initial activity. It showed an excellent tolerance to Trypsin, Pepsin, Compound Protease, and Flavourzyme and its activity was not inhibited by specific certain cations. AfBglA displayed broad substrate specificity, it acted on all tested pNP-glycosides and barley glucan, indicating this novel β-glucosidase exhibited a β-1, 3-1, 4-glucanase activity. Moreover, the AfBglA could effectively hydrolyze the soybean meal suspension into glucose and exhibit a strong tolerance to the inhibition of glucose at a concentration of 20.0?g/L during the saccharification. The maximum amount of the glucose obtained by AfBglA corresponded to 67.0?g/kg soybean meal. All of these properties mentioned above indicated that the AfBglA possibly attractive for food and feed industry and saccharification of cellulolytic materials.  相似文献   

12.
An extracellular amylase secreted by Aspergillus niveus was purified using DEAE fractogel ion exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5 % polyacrylamide gel electrophoresis (PAGE) and 10 % sodium dodecyl sulfate (SDS-PAGE). The enzyme exhibited 4.5 % carbohydrate content, 6.6 isoelectric point, and 60 and 52 kDa molar mass estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The amylase efficiently hydrolyzed glycogen, amylose, and amylopectin. The end-products formed after 24 h of starch hydrolysis, analyzed by thin layer chromatography, were maltose, maltotriose, maltotetraose, and maltopentaose, which classified the studied amylase as an α-amylase. Thermal stability of the α-amylase was improved by covalent immobilization on glyoxyl agarose (half-life of 169 min, at 70 °C). On the other hand, the free α-amylase showed a half-life of 20 min at the same temperature. The optima of pH and temperature were 6.0 and 65 °C for both free and immobilized forms.  相似文献   

13.
-Fructofuranosidase fromAspergillus japonicus, which produces 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose, was purified to homogeneity by fractionation with calcium acetate and ammonium sulphate and chromatography with DEAE-Cellulofine and Sephadex G-200. Its molecular size was estimated to be about 304,000 Da by gel filtration. The enzyme was a glycoprotein which contained about 20% (w/w) carbohydrate. Optimum pH for the enzymatic reaction was 5.5 to 6. The enzyme was stable over a wide pH range, from pH 4 to 9. Optimum reaction temperature for the enzyme was 60 to 65°C and it was stable below 60°C. The Km value for sucrose was 0.21m. The enzyme was inhibited by metal ions, such as those of silver, lead and iron, and also byp-chloromercuribenzoate.  相似文献   

14.
alpha-Galactosidase and invertase were accumulated in a coherent middle phase in a three-phase partitioning system under different conditions (ammonium sulphate, ratio of tert-butanol to crude extract, temperature and pH). alpha-Galactosidase and invertase were purified 15- and 12-fold with 50 and 54% activity recovery, respectively. The fractions of interfacial precipitate arising from the three-phase partitioning were analyzed by SDS-PAGE. Both purified preparations showed electrophoretic homogeneity on SDS-PAGE.  相似文献   

15.
An agar-degrading Thalassomonas bacterium, strain JAMB-A33, was isolated from the sediment off Noma Point, Japan, at a depth of 230 m. A novel -agarase from the isolate was purified to homogeneity from cultures containing agar as a carbon source. The molecular mass of the purified enzyme, designated as agaraseA33, was 85 kDa on both SDS-PAGE and gel-filtration chromatography, suggesting that it is a monomer. The optimal pH and temperature for activity were about 8.5 and 45°C, respectively. The enzyme had a specific activity of 40.7 U/mg protein. The pattern of agarose hydrolysis showed that the enzyme is an endo-type -agarase, and the final main product was agarotetraose. The enzyme degraded not only agarose but also agarohexaose, neoagarohexaose, and porphyran.  相似文献   

16.
Zhang  Weibin  Xu  Jingnan  Liu  Dan  Liu  Huan  Lu  Xinzhi  Yu  Wengong 《Applied microbiology and biotechnology》2018,102(5):2203-2212
Applied Microbiology and Biotechnology - It has been a long time since the first α-agarase was discovered. However, only two α-agarases have been cloned and partially characterized so far...  相似文献   

17.
18.
《Carbohydrate research》1987,159(1):137-148
A lectin from Artocarpus lakoocha seeds has been purified by affinity chromatography on a melibiose-agarose column. The homogeneity of the purified lectin was tested by several criteria, viz., poly(acrylamide)-gel electrophoresis, ultracentrifugal analysis, and gel filtration. The molecular weight of the lectin was estimated to be ∼70,000 as determined by Sephadex gel filtration. SDS-poly-(acrylamide)-gel electrophoresis gave a single component of molecular weight 18,000, suggesting that the lectin is a tetramer composed of four apparently identical subunits. The lectin agglutinated human erythrocytes, regardless of blood group. Artocarpus lakoocha lectin is a glycoprotein, and contains 11.7% of carbohydrates, in which d-xylose (6%) is the main sugar, with smaller proportions of d-galactose, d-glucose, d-mannose, N-acetyl-d-glucosamine, and N-acetyl-d-mannosamine. Amino acid analysis of the lectin revealed a high content of acidic and hydroxylic amino acids, a relatively low proportion of basic amino acids, and a trace of cysteine and methionine. In hapten-inhibition assays with simple sugars, glycosides of α-d-galactopyranose and N-acetyl-d-galactosamine were potent inhibitors of the purified lectin.  相似文献   

19.
An acid α-glucosidase (AAG) with an optimum pH of 4.5 and two isoforms of neutral α-glucosidase (NAG I and II) with an optimum pH of 6.5 were partially purified from preclimacteric banana pulp tissues by monitoring the 4-methylumbelliferyl α-D-glucoside (4MUαG) hydrolyzing activity. The molecular weights of the AAG and the two NAG were 70,000 and 42,000, respectively, by gel filtration. By kinetic studies, the AAG was found to be a typical maltase that required substrates such as maltose, maltotriose, maltotetraose, and maltopentaose rather than soluble starch. On the other hand, the two NAGs preferred 4MUαG to maltose as substrate and their maltase activities were about 50 times lower than that of the AAG. The NAGs, as well as the AAG, did not hydrolyze isomaltose, trehalose, sucrose, or glycogen at all. Sucrose was a competitive inhibitor of the AAG but not NAGs toward 4MUαG. Glucose and maltose were also competitive inhibitors of both AAG and NAGs.  相似文献   

20.
The cDNAs coding for Mortierella vinacea α-galactosidases I and II were expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. The recombinant enzymes purified to homogeneity from the culture filtrate were glycosylated, and had properties identical to those of the native enzymes except for improving the heat stability of α-galactosidase II and decreasing the specific activities of both enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号