首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To obtain cDNAs encoding oxidosqualene cyclase (OSC), we cloned two cDNAs, KcCAS and RsCAS, from roots of Kandelia candel (L.) Druce and leaves of Rhizophora stylosa Griff. by homology based PCR method respectively. The deduced amino acid sequences of both OSCs showed 82% homology to cycloartenol synthases from Lotus japonicus (OSC5) and Ricinus cummunis (RcCAS), suggesting that these are cycloartenol synthases of K. candel and R. stylosa. The genes obtained were expressed in a lanosterol synthase deficient Saccharomyces cerevisiae (ERG7) strain, GIL77. GC-MS analysis identified the accumulated reaction product in the yeast transformant to be cycloartenol, indicating that both KcCAS and RsCAS encode cycloartenol synthase.  相似文献   

2.
The first committed step in triterpenoid biosynthesis is the cyclization of oxidosqualene to polycyclic alcohols or ketones C30H50O. It is catalyzed by single oxidosqualene cyclase (OSC) enzymes that can carry out varying numbers of carbocation rearrangements and, thus, generate triterpenoids with diverse carbon skeletons. OSCs from diverse plant species have been cloned and characterized, the large majority of them catalyzing relatively few rearrangement steps. It was recently predicted that special OSCs must exist that can form friedelin, the pentacyclic triterpenoid whose formation involves the maximum possible number of rearrangement steps. The goal of the present study, therefore, was to clone a friedelin synthase from Kalanchoe daigremontiana, a plant species known to accumulate this triterpenoid in its leaf surface waxes. Five OSC cDNAs were isolated, encoding proteins with 761–779 amino acids and sharing between 57.4 and 94.3% nucleotide sequence identity. Heterologous expression in yeast and GC-MS analyses showed that one of the OSCs generated the steroid cycloartenol together with minor side products, whereas the other four enzymes produced mixtures of pentacyclic triterpenoids dominated by lupeol (93%), taraxerol (60%), glutinol (66%), and friedelin (71%), respectively. The cycloartenol synthase was found expressed in all leaf tissues, whereas the lupeol, taraxerol, glutinol, and friedelin synthases were expressed only in the epidermis layers lining the upper and lower surfaces of the leaf blade. It is concluded that the function of these enzymes is to form respective triterpenoid aglycones destined to coat the leaf exterior, probably as defense compounds against pathogens or herbivores.  相似文献   

3.
Chloroplast microsatellite (cpSSR) markers were developed for three ecologically and economically important tree species in the mangrove family, Rhizophoraceae: Bruguiera gymnorrhiza, Kandelia candel, and Rhizophora stylosa. Noncoding regions of chloroplast DNA (cpDNA) from each species were separately amplified using universal chloroplast primers. Six, two, and three polymorphic cpSSR loci in B. gymnorrhiza, K. candel, and R. stylosa, respectively, were developed from amplified noncoding cpDNA regions. Characterization of 216, 156, and 253 individuals of B. gymnorrhiza, K. candel, and R. stylosa, respectively, collected from different natural mangrove populations (B. gymnorrhiza, 9; K. candel, 7; R. stylosa, 9) on Iriomote Island in Japan showed that these loci provide cpSSR markers with polymorphisms ranging from two to four alleles per locus and gene diversity between 0.027 and 0.480. These cpSSR markers will be useful for analyzing the maternal lineage distributions and population genetic structures of the three species. Several of these markers may also be useful in similar studies of other mangrove species.  相似文献   

4.
5.
Cucurbitaceae plants contain characteristic triterpenoids. Momordica charantia, known as a bitter melon, contains cucurbitacins and multiflorane type triterpenes, which confer bitter tasting and exhibit pharmacological activities. Their carbon skeletons are biosynthesized from 2,3-oxidosqualene by responsible oxidosqualene cyclase (OSC). In order to identify OSCs in M. charantia, RNA-seq analysis was carried out from ten different tissues. The functional analysis of the resulting four OSC genes revealed that they were cucurbitadienol synthase (McCBS), isomultiflorenol synthase (McIMS), β-amyrin synthase (McBAS) and cycloartenol synthase (McCAS), respectively. Their distinct expression patterns based on RPKM values and quantitative RT-PCR suggested how the characteristic triterpenoids were biosynthesized in each tissue. Although cucurbitacins were finally accumulated in fruits, McCBS showed highest expression in leaves indicating that the early step of cucurbitacins biosynthesis takes place in leaves, but not in fruits.

Abbreviations: OSC: oxidosqualene cyclase; RPKM: reads perkilobase of exon per million mapped reads  相似文献   


6.
Xue Z  Duan L  Liu D  Guo J  Ge S  Dicks J  ÓMáille P  Osbourn A  Qi X 《The New phytologist》2012,193(4):1022-1038
Triterpenes are one of the largest classes of plant metabolites and have important functions. A diverse array of triterpenoid skeletons are synthesized via the isoprenoid pathway by enzymatic cyclization of 2,3-oxidosqualene. The genomes of the lower plants Chlamydomonas reinhardtii and moss (Physcomitrella patens) contain just one oxidosqualene cyclase (OSC) gene (for sterol biosynthesis), whereas the genomes of higher plants contain nine to 16 OSC genes. Here we carry out functional analysis of rice OSCs and rigorous phylogenetic analysis of 96 OSCs from higher plants, including Arabidopsis thaliana, Oryza sativa, Sorghum bicolor and Brachypodium distachyon. The functional analysis identified an amino acid sequence for isoarborinol synthase (OsIAS) (encoded by Os11g35710/OsOSC11) in rice. Our phylogenetic analysis suggests that expansion of OSC members in higher plants has occurred mainly through tandem duplication followed by positive selection and diversifying evolution, and consolidated the previous suggestion that dicot triterpene synthases have been derived from an ancestral lanosterol synthase instead of directly from their cycloartenol synthases. The phylogenetic trees are consistent with the reaction mechanisms of the protosteryl and dammarenyl cations which parent a wide variety of triterpene skeletal types, allowing us to predict the functions of the uncharacterized OSCs.  相似文献   

7.
Lanosterol biosynthesis in plants   总被引:5,自引:0,他引:5  
Plants biosynthesize sterols from cycloartenol using a pathway distinct from the animal and fungal route through lanosterol. Described herein are genome-mining experiments revealing that Arabidopsis encodes, in addition to cycloartenol synthase, an accurate lanosterol synthase (LSS)--the first example of lanosterol synthases cloned from a plant. The coexistence of cycloartenol synthase and lanosterol synthase implies specific roles for both cyclopropyl and conventional sterols in plants. Phylogenetic reconstructions reveal that lanosterol synthases are broadly distributed in eudicots but evolved independently from those in animals and fungi. Novel catalytic motifs establish that plant lanosterol synthases comprise a third catalytically distinct class of lanosterol synthase.  相似文献   

8.
Sterols, essential eukaryotic constituents, are biosynthesized through either cyclic triterpenes, lanosterol (fungi and animals) or cycloartenol (plants). The cDNA for OSC7 of Lotus japonicus was shown to encode lanosterol synthase (LAS) by the complementation of a LAS-deficient mutant yeast and structural identification of the accumulated lanosterol. A double site-directed mutant of OSC7, in which amino acid residues crucial for the reaction specificity were changed to the cycloartenol synthase (CAS) type, produced parkeol and cycloartenol. The multiple amino acid sequence alignment of a conserved region suggests that the LAS of different eukaryotic lineages emerged from the ancestral CAS by convergent evolution.  相似文献   

9.
Two new triterpene synthase cDNAs, named as OEW and TRW, were cloned from olive leaves (Olea europaea) and from dandelion roots (Taraxacum officinale), respectively, by the PCR method with primers designed from the conserved sequences found in the known oxidosqualene cyclases. Their ORFs consisted of 2274 bp nucleotides and coded for 758 amino acid long polypeptides. They shared high sequence identity (78%) to each other, while they showed only about 60% identities to the known triterpene synthases LUPI (lupeol synthase clone from Arabidopsis thaliana) and PNY (beta-amyrin synthase clone from Panax ginseng) at amino acid level. To determine the enzyme functions of the translates, they were expressed in an ERG7 deficient yeast mutant. Accumulation of lupeol in the cells of yeast transformants proved both of these clones code for lupeol synthase proteins. An EST (expression sequence tag) clone isolated from Medicago truncatula roots as a homologue of cycloartenol synthase gene, exhibits high sequence identity (75-77%) to these two lupeol synthase cDNAs, suggesting it to be another lupeol synthase clone. Comparatively low identity (approximately 57%) of LUP1 from Arabidopsis thaliana to either one of these clones leaves LUP1 as a distinct clone among lupeol synthases. From these sequence comparisons, now we propose that two branches of lupeol synthase gene have been generated in higher plants during the course of evolution.  相似文献   

10.
Floral scent chemistry of mangrove plants   总被引:3,自引:0,他引:3  
The flowers of mangrove plants are pollinated by a variety of pollinators including birds, bats, and insects. This study analyzed the floral scent chemistry of mangroves on Iriomote Island (located near Taiwan) including Bruguiera gymnorrhiza (L.) Lamk. (Rhizophoraceae), Kandelia candel (L.) Druce (Rhizophoraceae), Rhizophora stylosa Griff. (Rhizophoraceae), Sonneratia alba J. Smith (Sonneratiaceae), Nypa fruticans (Thunb.) Wurmb. (Palmae), Lumnitzera racemosa Willd. (Combretaceae), Avicennia marina (Forsk.) Vierh. (Avicenniaceae or Verbenaceae), and Pemphis acidula Forst. (Lythraceae). A total of 61 chemicals (fatty acid derivatives, terpenoids, carotenoid derivatives, benzenoids, nitrogen-containing compounds, 13 unknown chemicals) were detected in the floral scents of the various species. The species displayed a distinct chemical profile ranging from only two chemicals in the floral scent of Kandelia candel to more than 25 chemicals in the floral scent of Nypa fruticans. All of the identified chemicals have been found in the floral scents of other angiosperms. The chemical profile of some species can be correlated with their floral morphology and pollinators. Received: August 18, 2001 / Accepted: October 9, 2001  相似文献   

11.
12.
13.
Soil conditions of mangrove forests in southern Japan were found to correlate largely with zonal distributions of the species.Kandelia candel grew in soils with low salinity and low pH,Avicennia marina, Rhizophora stylosa andSonneratia alba in soils with high salinity and high pH, andBruguiera gymnorrhiza in soil with a wide range of pH but limited range of salinity.Lumnitzera racemosa colonized soil with a wide range of pH and medium salinity. Seedlings ofKandelia candel, Bruguiera gymnorrhiza andRhizophora stylosa were planted in soils with differing salinity and pH. Optimum seedling growth ofKandelia, Bruguiera andRhizophora occurred when plants were cultivated in soils similar to those of their natural habitats, suggesting that growth of mangrove species and their zonal distributions were regulated by salinity and soil pH.  相似文献   

14.
Quantitative character variations of xylem cambial derivatives during secondary growth of the trunk are described for five representative mangrove species: Rhizophora stylosa (Rhizophoraceae), Bruguiera gymnorrhiza (Rhizophoraceae), Kandelia candel (Rhizophoraceae), Sonneratia alba (Sonneratiaceae) and Avicennia marina (Avicenniaceae). Two variation patterns in tracheary element length were revealed among these species. For R. stylosa, A. marina and S. alba, both vessel elements and fibers showed an increase in length during the early stages of secondary growth, then tended to be constant in later growth. In the other two species, little change occurred in the length of either vessel elements or fibers throughout the thickening growth period. Variation patterns in tracheary element length appeared to correspond with the different mangrove species' adaptations to their habitats. In addition, these five species exhibited diverse variation patterns in quantitative characters of the rays as well as in other quantitative characters of the vessels and fibers during secondary growth of their trunk.  相似文献   

15.
Predicted protein sequences of fungal chitin synthases can be divided into a non-homologous N-terminal region and a C-terminal region that shows significant homology among the various synthases. We have explored the function of these domains by constructing a series of nested deletions, extending from either end, in theCHS1 andCHS2 genes ofSaccharomyces cerevisiae. In both cases, most or all of the sequences encoding the non-homologous N-terminal region (one-third of the protein for Chs1p and about one-fourth for Chs2p) could be excised, with little effect on the enzymatic activity in vitro of the corresponding synthase or on its function in vivo. However, further small deletions (20–25 amino acids) into the homologous region were deleterious to enzymatic activity and function, and often led to changes in the zymogenic character of the enzymes. Similarly, relatively small (about 75 amino acids) deletions from the C-terminus resulted in loss of enzymatic activity and function of both synthases. Thus, it appears that all the information necessary for membrane localization, enzymatic activity and function resides in the homologous regions of Chs1p and Chs2p, a situation that may also apply to other chitin synthases.These authors contributed equally to this paper  相似文献   

16.
17.
18.
Diversity and distribution of the mangrove forests in Taiwan   总被引:3,自引:0,他引:3  
In a survey of 1992 to 1994, mangrove forests withfour species of true mangroves, Kandelia candel(L.) Druce, Avicennia marina(Forsk.) Vierh.,Rhizophora stylosaGriff., and Lumnitzera racemosaWilld., were found at 22locations in the west coast of Taiwan. The northernrange of their distribution was at Tanshui Estuary(Latitude 25°11N) and the southern range atTapen Bay (22°28N). The total area wasestimated to be 286.95 ha. There was an obvious changein species composition and a decrease in speciesnumber of true mangroves from south to north: the fourspecies dominated by A. marinain thesouth and K. candelas thesole species in the north. Air temperature associatedwith sea surface temperature and oceanic currents inwinter, but not soil property, was found to be theprimary environmental factor, affecting the diversityand distribution of true mangroves in Taiwan as wellas in the northeast region of Asia.  相似文献   

19.
A vast array of triterpenes are found in living organisms in addition to lanosterol and cycloartenol, which are involved in sterol biosynthesis in non–photosynthetic and photosynthetic eukaryotes respectively. The chemical structure of these triterpenes is determined by a single step catalysed by 2,3–oxidosqualene–triterpene cyclases. The present study describes cloning and functional expression in yeast of several OS–triterpene cyclases. Three Arabidopsis thaliana cDNAs encoding proteins (ATLUP1, ATLUP2, ATPEN1) 57%, 58% and 49% identical to cycloartenol synthase from the same plant were isolated. Expression of these cDNAs in yeast showed that the recombinant proteins catalyse the synthesis of various pentacyclic triterpenes. Whereas ATLUP1 is essentially involved in the synthesis of lupeol, ATLUP2 catalyses the production of lupeol, – and –amyrin (in a 15:55:30 ratio). ATLUP2 is therefore a typical multifunctional enzyme. Under the same conditions, ATPEN1 did not lead to any product. Systematic sequencing of the Arabidopsis genome has led to genomic sequences encoding proteins identical to the above triterpene synthases. ATLUP1 and ATLUP2 are representative of a small subfamily (A) of at least five genes, whereas ATPEN1 is representative of a subfamily (B) of at least seven genes. The number of introns is characteristic of each subfamily. Whereas genes of family A possess 17 exons and 16 introns, genes of the subfamily B contain 14 exons and 13 introns. The size of each exon is remarkably conserved within each subfamily whereas that of each intron appears to be highly variable. Organization of the genes, sequences and functions of the deduced proteins are discussed in evolutionary terms.  相似文献   

20.
The reducing polyketide synthases found in filamentous fungi are involved in the biosynthesis of many drugs and toxins. Lichens produce bioactive polyketides, but the roles of reducing polyketide synthases in lichens remain to be clearly elucidated. In this study, a reducing polyketide synthase gene (U1PKS3) was isolated and characterized from a cultured mycobiont of Usnea longissima. Complete sequence information regarding U1PKS3 (6,519 bp) was obtained by screening a fosmid genomic library. A U1PKS3 sequence analysis suggested that it contains features of a reducing fungal type I polyketide synthase with β-ketoacyl synthase (KS), acyltransferase (AT), dehydratase (DH), enoyl reductase (ER), ketoacyl reducatse (KR), and acyl carrier protein (ACP) domains. This domain structure was similar to the structure of ccRadsl, which is known to be involved in resorcylic acid lactone biosynthesis in Chaetomium chiversii. The results of phylogenetic analysis located U1PKS3 in the clade of reducing polyketide synthases. RT-PCR analysis results demonstrated that UIPKS3 had six intervening introns and that UIPKS3 expression was upregulated by glucose, sorbitol, inositol, and mannitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号