共查询到20条相似文献,搜索用时 0 毫秒
1.
A selection of different glycosidases was screened for the glycosylation of 1-propanethiol. The g -glucosidases from almond, Aspergillus niger and Caldocellum saccharolyticum were capable of 1-propanethioglucoside (1-PTG) formation. The almond g -glucosidase showed the highest activity in this reversed hydrolysis type of reaction using glucose as glucosyl donor. Besides 1-propanethiol, also thioglucosides of 2-propanethiol and furfuryl mercaptan were formed by the almond g -glucosidase. The substrate specificity of the almond g -glucosidase with respect to thioglucosylation is restricted to primary and secondary aliphatic thiols. Once the thioglucosides are formed, they are not hydrolyzed at a significant rate by almond g -glucosidase. As a consequence the synthesis of 1-PTG could be observed at very low aglycone concentrations (0.5% v/v based on the reaction solution) and high yields (68% based on 1-PT and 41% based on glucose) were obtained. An excess of aglycone, otherwise frequently applied in reversed hydrolysis glycosylation, is therefore not necessary in the glucosylation of 1-PT. 相似文献
2.
P. Herdewijn R. Charubala R. Pauwels E. De Clercq W. Pfleiderer 《Nucleosides, nucleotides & nucleic acids》2013,32(1-2):441-442
Abstract The antiviral activity of (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVdUrd), acyclovir and other antiherpetic nucleosides depends on a selective phosphorylation by the herpesvirus-induced thymidine kinase in the infected cells. Viruses not encoding a specific thymidine kinase (TK) activity are resistant to the action of these nucleoside analogues. The nucleoside monophosphates are as such poorly taken up by the cells. In order to circumvent the necessity of intracellular phosphorylation, we synthesized four core oligonucleotides bearing a biological active nucleoside at the 2′end. It was hypothesized that these core oligonucleotides, like core 2–5A itself, would be taken up within the cell and that, following intracellular 2′-5′ phosphodiesterase cleavage, the 5′-monophosphate of the active product would be formed. In these circumstances, activity against TK- strains could be expected. 相似文献
3.
Shigetaka Okada Sumio Kitahata Masataka Higashihara Juichiro Fukumoto 《Bioscience, biotechnology, and biochemistry》2013,77(9):1407-1415
Oligosaccharides terminated by radioactive sucrose at the reducing end of maltooligosaccharides have been used in the oligosaccharide mapping procedure for characterizing α-amylases. The action patterns of ten α-amylases from various origins were investigated with this mapping method and compared with the results with normal maltooligosaccharides. The experimental results indicated that Bacillus subtilis saccharifying, Endomycopsis and pancreatic α-amylases had similar action patterns toward oligosaccharides with or without fructose at the reducing end. However, the action patterns of other seven α-amylases were somewhat different. 相似文献
4.
Cornelis H. Hokke Astrid Zervosen Lothar Elling David H. Joziasse Dirk H. van den Eijnden 《Glycoconjugate journal》1996,13(4):687-692
The trisaccharide Gal13Gal14GlcNAc1O-(CH2)8COOCH3 was enzymatically synthesized, within situ UDP-Gal regeneration. By combination in one pot of only four enzymes, namely, sucrose synthase, UDP-Glc 4-epimerase, UDP-Gal:GlcNAc 4-galactosyltransferase and UDP-Gal:Gal14GlcNAc 3-galactosyltransferase, Gal13Gal14GlcNAc1O-(CH2)8COOCH3 was formed in a 2.2 µmol ml–1 yield starting from the acceptor GlcNAc1O-(CH2)8COOCH3. This is an efficient and convenient method for the synthesis of the Gal13Gal14GlcNAc epitope which plays an important role in various biological and immunological processes. 相似文献
5.
Antonio Trincone Edoardo Pagnotta Assunta Giordano Giuseppe Perugino Mosè Rossi Marco Moracci 《Biocatalysis and Biotransformation》2013,31(1):17-24
The synthesis of 2-deoxyglycosides and, for the first time, of 2-deoxygalactosides is reported using a thermophilic and thermostable β-glycosyl hydrolase from the archeon Sulfolobus solfataricus and glucal or galactal as donors. The yields observed with alkyl acceptors confirmed that the robustness of the biocatalyst is of great help in designing practical syntheses of pure β-anomers of 2-deoxy derivatives of 4-penten-1-ol (obtained in 80% yield at 20 fold molar excess) and 3,4-dimethoxybenzyl alcohol (obtained in 19% yield at 3.3 fold molar excess). The attachment of 2-deoxyglyco units was performed on various pyranosidic acceptors (p-nitrophenyl α-d-glucopyranoside, o-nitrophenyl 2-deoxy-N-acetyl-α-d-glucosamine and p-nitrophenyl 2-deoxy-N-acetyl-β-d-glucosamine). At low molecular excesses of the acceptors, satisfactory yields (20-40%) of chromophoric 2-deoxy di- and trisaccharides were obtained. The different regioselectivity of our enzyme with respect to mesophilic counterparts reflects the importance of biodiversity in this field for the construction of a library of different glycosidases with different specificity. 相似文献
6.
Capsaicin 4-O-β-xylooligosaccharides were synthesized by a biocatalytic xylosylation using Aspergillus sp. β-xylosidase. Capsaicin was converted into three new capsaicin glycosides, i.e. capsaicin 4-O-β-xyloside, capsaicin 4-O-β-xylobioside, and capsaicin 4-O-β-xylotrioside in 15, 12 and 10% yield, respectively. All products were isolated from the reaction mixtures by preparative HPLC. The structures of the products were determined by NMR spectroscopic method. 相似文献
7.
Optimization of hexyl-g-glycoside synthesis from lactose in hexanol at low water activity and high temperature was investigated using g-glycosidases from hyperthermophilic organisms: Sulfolobus solfataricus (LacS) and Pyrococcus furiosus (CelB). The method for water activity adjustment by equilibration with saturated salt solutions was adapted for use at high temperature. The influence of enzyme immobilization (on XAD-4, XAD-16, or Celite), addition of surfactants (AOT or SDS), substrate concentration, water activity, and temperature (60-90°C) on enzymatic activity and hexyl-g-glycoside yield were examined. Compared to other g-glycosidases in lactose conversion into alkyl glycoside, these enzymes showed high activity in a hexanol one-phase system and synthesized high yields of both hexyl-g-galactoside and hexyl-g-glucoside. Using 32 u g/l lactose (93 u mM), LacS synthesized yields of 41% galactoside (38.1 u mM) and 29% glucoside (27.0 u mM), and CelB synthesized yields of 63% galactoside (58.6 u mM) and 28% glucoside (26.1 u mM). With the addition of SDS to the reaction it was possible to increase the initial reaction rate of LacS and hexyl-g-galactoside yield (from 41 to 51%). The activity of the lyophilized enzyme was more influenced by the water content in the reaction than the enzyme on solid support. In addition, it was concluded that for the lyophilized enzyme preparation the enzymatic activity was much more influenced by the temperature when the water activity was increased. A variety of different glycosides were prepared using different alcohols as acceptors. 相似文献
8.
Lars Hedbys Elisabet Johansson Klaus Mosbach Per-Olof Larsson Alf Gunnarsson Sigfrid Svensson Hans Lönn 《Glycoconjugate journal》1989,6(2):161-168
Gal1-3GlcNAc (1) and Gal1-3GlcNAc-SEt (2) were synthesized on a 100 mg scale by the transgalactosylation reaction of bovine testes -galactosidase with lactose as donor andN-acetylglucosamine and GlcNAc-SEt as acceptors. In both cases the product mixtures contained unwanted isomers and were treated with -galactosidase fromEscherichia coli which has a different specificity, under conditions favouring hydrolysis, yielding besides the desired products, monosaccharides and traces of trisaccharides. The products were purified to >95% by gel filtration, with a final yield of 12% of 1 and 17% of 2, based on added acceptor. In a separate experiment Gal1-6GlcNAc-SEt (3) was synthesized by the transglycosylation reaction using -galactosidase fromEscherichia coli. No other isomers were detected. Compound 3 was purified by HPLC. 相似文献
9.
Recombinant Penicillium citrinum -1,2-mannosidase, expressed in Aspergillus oryzae, was employed to carry out regioselective synthesis of -d-mannopyranosyl-(12)-d-mannose. Yields (w/w) of 16.68% disaccharide, 3.07% trisaccharide and 0.48% tetrasaccharide were obtained, with 12 linkages present at 98.5% of the total linkages formed. Non-specific -mannosidase from almond was highly efficient in reverse hydrolysis and oligosaccharide yields of 45–50% were achieved. The products of the almond mannosidase were a mixture of disaccharides (30.75%, w/w), trisaccharides (12.26%, w/w) and tetrasaccharides (1.89%, w/w) with 12, 13 and 16 isomers. -1,2-linkage specific mannosidase from P. citrinum and -1,6-linkage-specific mannosidase from Aspergillus phoenicis were used in combination to hydrolyse the respective linkages from the mixture of isomers, resulting in -d-mannopyranosyl-(13)-d-mannose in 86.4% purity. The synthesised oligosaccharides can potentially inhibit the adhesion of pathogens by acting as \"decoys\" of receptors of type-1 fimbriae carried by enterobacteria. 相似文献
10.
《Bioscience, biotechnology, and biochemistry》2013,77(2):179-183
α-Linked galactooligosaccharides (α-GOS A from galactose, and α-GOS B from lactose hydrolyzates) were synthesized using the reverse reaction of α-galactosidase from Candida guilliermondii H-404. The α-GOS A and B were isolated and their structures were identified by methylation analysis. The main product of the disaccharides in α-GOS A and α-GOS B was the (1, 6)-isomer. The remaining disaccharides consisted of (1, 3)-, (1, 2)-, and (1, 1)-isomers. Conditions for synthesis of α-GOS B from lactose hydrolyzates were examined. The yield of α-GOS B was approximately 20% when the mixture of heat-treated cells containing a-galactosidase (60U/g galactose) and 85% lactose hydrolyzates was incubated for 90 h at pH 4.5 and 50°C. The α-GOS A and B were available as the donor substrates in transgalactosylation of α-galactosidase in the same manner as melibiose. 相似文献
11.
The induction of synthesis of the secreted enzymes endo-1,4--xylanase (EC 3.2.1.8) and -galactosidase (EC 3.2.1.23) in original and recombinant Penicillium canescens strains has been studied. In all producer strains, the synthesis of these enzymes was induced by arabinose and its metabolite arabitol. The two enzymes differed in the concentration of arabinose required for induction: the synthesis of -galactosidase was most pronounced at 1 mM, whereas maximum synthesis of endo-1,4--xylanase was observed at 5–10 mM. An increase in the number of endo-1,4--xylanase copies in the high-copy-number strain of the fungus suppressed the synthesis of -galactosidase; the synthesis of endo-1,4--xylanase in the high-copy-number recombinant producing -galactosidase was affected to a lesser extent. The amount of enzymes synthesized did not depend on the saccharide used as the sole source of carbon for growing the mycelium prior to its transfer to the inducer-containing medium. 相似文献
12.
Gang Ma Lancui Zhang Asami Matsuta Kazuki Matsutani Kazuki Yamawaki Masaki Yahata Anung Wahyudi Reiko Motohashi Masaya Kato 《Plant physiology》2013,163(2):682-695
In this study, the pathway of β-citraurin biosynthesis, carotenoid contents and the expression of genes related to carotenoid metabolism were investigated in two varieties of Satsuma mandarin (Citrus unshiu), Yamashitabeni-wase, which accumulates β-citraurin predominantly, and Miyagawa-wase, which does not accumulate β-citraurin. The results suggested that CitCCD4 (for Carotenoid Cleavage Dioxygenase4) was a key gene contributing to the biosynthesis of β-citraurin. In the flavedo of Yamashitabeni-wase, the expression of CitCCD4 increased rapidly from September, which was consistent with the accumulation of β-citraurin. In the flavedo of Miyagawa-wase, the expression of CitCCD4 remained at an extremely low level during the ripening process, which was consistent with the absence of β-citraurin. Functional analysis showed that the CitCCD4 enzyme exhibited substrate specificity. It cleaved β-cryptoxanthin and zeaxanthin at the 7,8 or 7′,8′ position. But other carotenoids tested in this study (lycopene, α-carotene, β-carotene, all-trans-violaxanthin, and 9-cis-violaxanthin) were not cleaved by the CitCCD4 enzyme. The cleavage of β-cryptoxanthin and zeaxanthin by CitCCD4 led to the formation of β-citraurin. Additionally, with ethylene and red light-emitting diode light treatments, the gene expression of CitCCD4 was up-regulated in the flavedo of Yamashitabeni-wase. These increases in the expression of CitCCD4 were consistent with the accumulation of β-citraurin in the two treatments. These results might provide new strategies to improve the carotenoid contents and compositions of citrus fruits.Carotenoids, a diverse group of pigments widely distributed in nature, fulfill a variety of important functions in plants and play a critical role in human nutrition and health (Schwartz et al., 1997; Cunningham and Gantt, 1998; Havaux, 1998; Krinsky et al., 2003; Ledford and Niyogi, 2005). The pathway of carotenoid biosynthesis has been well documented in various plant species, including Arabidopsis (Arabidopsis thaliana; Park et al., 2002), tomato (Lycopersicon esculentum; Isaacson et al., 2002), pepper (Capsicum annuum; Bouvier et al., 1998), citrus (Citrus spp.; Kato et al., 2004, 2006; Rodrigo et al., 2004; Rodrigo and Zacarías, 2007; Kato, 2012; Zhang et al., 2012a), and apricot (Prunus armenaica; Kita et al., 2007). Genes encoding the enzymes in the carotenoid biosynthetic pathway have been cloned, and their expression profiles have also been characterized (Fig. 1). As carotenoids contain a series of conjugated double bonds in the central chain, they can be oxidatively cleaved in a site-specific manner (Mein et al., 2011). The oxidative cleavage of carotenoids not only regulates their accumulation but also produces a range of apocarotenoids (Walter et al., 2010). In higher plants, many different apocarotenoids derive from the cleavage of carotenoids and have important metabolic functions, such as plant hormones, pigments, aroma and scent compounds, as well as signaling compounds (Fig. 1). A well-known example is abscisic acid, which is a C15 compound derived from the cleavage of the 11,12 double bond of 9-cis-violaxanthin and 9′-cis-neoxanthin (Schwartz et al., 1997; Tan et al., 1997; Cutler and Krochko, 1999; Chernys and Zeevaart, 2000; Giuliano et al., 2003).Open in a separate windowFigure 1.Carotenoid and apocarotenoid metabolic pathway in plants. GGPP, Geranylgeranyl diphosphate. Enzymes, listed here from top to bottom, are named according to the designation of their genes: PSY, phytoene synthase; PDS, Phytoene desaturase; ZDS, ζ-carotene desaturase; ZISO, 15-cis-ζ-carotene isomerase; CRTISO, carotenoid isomerase; LCYb, lycopene β-cyclase; LCYe, lycopene ε-cyclase; HYe, ε-ring hydroxylase; HYb, β-ring hydroxylase; ZEP, zeaxanthin epoxidase; VDE, violaxanthin deepoxidase; NCED, 9-cis-epoxycarotenoid dioxygenase.Carotenoid cleavage dioxygenases (CCDs) are a group of enzymes that catalyze the oxidative cleavage of carotenoids (Ryle and Hausinger, 2002). CCDs are nonheme iron enzymes present in plants, bacteria, and animals. In plants, CCDs belong to an ancient and highly heterogenous family (CCD1, CCD4, CCD7, CCD8, and 9-cis-epoxycarotenoid dioxygenases [NCEDs]). The similarity among the different members is very low apart from four strictly conserved His residues and a few Glu residues (Kloer and Schulz, 2006; Walter et al., 2010). In Arabidopsis, the CCD family contains nine members (CCD1, NCED2, NCED3, CCD4, NCED5, NCED6, CCD7, CCD8, and NCED9), and orthologs in other plant species are typically named according to their homology with an Arabidopsis CCD (Huang et al., 2009). In our previous study, the functions of CitCCD1, CitNCED2, and CitNCED3 were investigated in citrus fruits (Kato et al., 2006). The recombinant CitCCD1 protein cleaved β-cryptoxanthin, zeaxanthin, and all-trans-violaxanthin at the 9,10 and 9′,10′ positions and 9-cis-violaxanthin at the 9′,10′ position. The recombinant CitNCED2 and CitNCED3 proteins cleaved 9-cis-violaxanthin at the 11,12 position to form xanthoxin, a precursor of abscisic acid (Kato et al., 2006). To date, information on the functions of other CCDs in citrus fruits remains limited, while the functions of CCD7 and CCD8, as well as NCED5, NCED6, and NCED9, in Arabidopsis have been characterized (Kloer and Schulz, 2006; Walter et al., 2010). In Arabidopsis, CCD7 cleaves all-trans-β-carotene at the 9′,10′ position to form all-trans-β-apo-10′-carotenal. All-trans-β-apo-10′-carotenal is further shortened by AtCCD8 at the 13,14 position to produce β-apo-13-carotenone (Alder et al., 2012). NCED5, NCED6, and NCED9 cleave 9-cis-violaxanthin at the 11,12 position to form xanthoxin (Tan et al., 2003). Compared with other CCDs, the function of CCD4 is poorly understood. In Chrysanthemum morifolium, CmCCD4a contributed to the white color formation by cleaving carotenoids into colorless compounds (Ohmiya et al., 2006). Recently, it has been reported that CsCCD4, CmCCD4a, and MdCCD4 could cleave β-carotene to yield β-ionone (Rubio et al., 2008; Huang et al., 2009).β-Citraurin, a C30 apocarotenoid, is a color-imparting pigment responsible for the reddish color of citrus fruits (Farin et al., 1983). In 1936, it was first discovered in Sicilian oranges (Cual, 1965). In citrus fruits, the accumulation of β-citraurin is not a common event; it is only observed in the flavedos of some varieties during fruit ripening. The citrus varieties accumulating β-citraurin are considered more attractive because of their red-orange color (Ríos et al., 2010). Although more than 70 years have passed since β-citraurin was first identified, the pathway of its biosynthesis is still unknown. As its structure is similar to that of β-cryptoxanthin and zeaxanthin, β-citraurin was presumed to be a degradation product of β-cryptoxanthin or zeaxanthin (Oberholster et al., 2001; Rodrigo et al., 2004; Ríos et al., 2010; Fig. 1). To date, however, the specific cleavage reaction producing β-citraurin has not been elucidated. In this study, we found that the CitCCD4 gene was involved in the synthesis of β-citraurin, using two citrus varieties of Satsuma mandarin (Citrus unshiu), Yamashitabeni-wase, which accumulates β-citraurin predominantly, and Miyagawa-wase, which does not accumulate β-citraurin. To confirm the role of the CitCCD4 gene further, functional analyses of the CitCCD4 enzyme were performed in vivo and in vitro. Additionally, the regulation of β-citraurin content and CitCCD4 gene expression in response to ethylene and red light-emitting diode (LED) light treatments was also examined. This study, to our knowledge, is the first to investigate the biosynthesis of β-citraurin in citrus fruits. The results might provide new strategies to enhance the nutritional and commercial qualities of citrus fruits. 相似文献
13.
Our recent studies have revealed the existence of two distinct Gal: 3-O-sulfotransferases capable of acting on the C-3 position of galactose in a Core 2 branched structure, e.g., Gal14GlcNAc16(Gal13)GalNac1OBenzyl as acceptor to give 3-O-sulfoGal14GlcNAc13(Gal13)GalNAc1OB 20 and Gal14GlcNAc16(3-O-sulfoGal13)GalNAc1OB 23. We herein report the synthesis of these two compounds and also that of other modified analogs that are highly specific acceptors for the two sulfotransferases. Appropriately protected 1-thio-glycosides 7, 8, and 10 were employed as glycosyl donors for the synthesis of our target compounds. 相似文献
14.
Kurt G. I. Nilsson 《Biotechnology letters》1996,18(7):791-794
A new approach for the highly specific preparation of L-serine conjugates of lactosamine and Gal1-3GalNAc is described. Thus, the L-serine derivative of lactosamine Gal1-4GlcNAc-O-(N-Z)-Ser-OEt, was obtained from lactose, employing GlcNAc-O-(N-Z)-Ser-OEt as acceptor and a yeast -galactosidase as catalyst Galp 1-3GalNAc-O-(N-Alloc)-Ser-OMe was obtained from lactose, employing GalNAc-O-(N-Alloc)-Ser-OMe as acceptor and -galactosidase from bovine testes as catalyst. 相似文献
15.
Sreedhara Sangadala Subramanian Sivakami Joseph Mendicino 《Molecular and cellular biochemistry》1991,101(2):125-143
Summary Two specific -N-acetylglucosaminyltransferases involved in the branching and elongation of mucin oligosaccharide chains, namely, a 1,6 N-acetylglucosaminylsaminyltransferase that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to Gal3GalNAc-Mucin to yield Gal3(GlcNAc6)GalNAc-Mucin and a 3-N-acetylglucosaminyl transferase that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to Gal3(GlcNAC6)GalNAc-mucin to yield GlcNAc3Gal3 (GlcNAc6)GalNAc-Mucin were purified from the microsomal fraction of swine trachea epithelium. The 1,6-N-acetylglucosaminyltransferase was purified about 21,800-fold by procedures which included affinity chromatography on DEAE columns containing bound asialo Cowper's gland mucin glycoprotein with Gal1,3GalNAc side chains. The apparent molecular weight estimated by gel filtration was found to be about 60 Kd. The purified enzyme showed a high specificity for Gal1,3GalNAc chains and the most active substrates were mucin glycoproteins containing these chains. The apparent Km of the 6-glucosaminyltrans-ferase for Cowper's gland mucin glycoprotein containing Gal1,3GalNAc chains was 0.53 µM; for UDP-N-acetylglucosamine, 12 µM; and for Gal 1,3GalNAc NO2ø, 4 mM. The activity of the 6-glucosaminyltransferase was dependent on the extent of glycosylation of the Gal3GalNAc chains in Cowper's gland mucin glycoprotein.The best substrate for the partially purified 3-Glucosaminyltransferase was Cowper's gland mucin glycoprotein containing Gal1,3(GlcNAc6)GalNAc side chains. This enzyme showed little or no activity with intact sialylated Cowper's gland mucin glycoprotein or derivatives of this glycoprotein containing GalNAc or Gal1,3GalNAc side chains.The radioactive oligosaccharides formed by these enzymes in large scale reaction mixtures were released from the mucin glycoproteins by treatment with alkaline borohydride, isolated by gel filtration on Bio-Gel P-6 and characterized by methylation analysis and sequential digestion with exoglycosidases. The oligosaccharide products formed by the 6- and 3-glucosaminyltransferases were shown to be Gal3(GlcNAC6) GalNAc and GlcNAc3 Gal3(GlcNAC6)GalNAc respectively.Taken collectively, these results demonstrate that swine trachea epithelium contains two specific N-acetylglucosaminyltransferases which catalyze the initial branching and elongation reactions involved in the synthesis of O-linked oligosaccharide chains in respiratory mucin glycoproteins. The first enzyme a 6-glucosaminyltransferase converts Gal3GalNAc chains in mucin glycoproteins to Gal3(GlcNAc6)GalNAc chains. This product is the substrate for a second 3-glucosaminyltransferase which converts the Gal3(GlcNAc6)GalNAc chains to GlcNAc3Gal(GlcNAc6)GalNAc chains in the glycoprotein. The 3-glucosaminyltransferase did not utilize Gal3GalNAc chains as a substrate and this results in an ordered sequence of addition of N-acetylglucosamine residues to growing oligosaccharide chains in tracheal mucin glycoproteins.Abbreviations NeuNAc
N-acetylneuraminic acid
- GalNAcol
N-acetylgalactosaminitol
- CGMG
Cowper's gland mucin glycoprotein
- GalNAc-CGMG
Cowper's gland mucin glycoprotein containing GalNAc side chains O-glycosidically linked to serine or threonine
- Gal3GalNAc-CGMC
Cowper's gland mucin glycoprotein containing Gal3GalNAc side chains
- MES
2-(N-morpholino) Ethane Sulfonic acid
- PBS
Phosphate Buffered Saline 相似文献
16.
Enzymatic characterization of CMP-NeuAc:Galβ1-4GlcNAc-R α(2-3)-sialyltransferase from human placenta
In this report we present the enzymatic characterization of CMP-NeuAc:Gal1-4GlcNAc-R (2-3)-sialyltransferase from human placenta using placenta membranes as an enzyme preparation. This sialyltransferase is highly sensitive to detergents and prefers type 2 chain (Gal1-4GlcNAc) over type 1 chain (Gal1-3GlcNAc) acceptors. Oligosaccharides and glycopeptides were better acceptor substrates than glycoproteins. Of the branched oligosaccharides, those with a bisectedN-acetylglucosamine (GlcNAc) structure appeared to be poorer substrates, while triantennary structures containing a Gal1-4GlcNAc1-4Man1-3Man branch were preferred. Product characterization, using 400 MHz1H-NMR spectroscopy, confirmed that sialic acid was introduced into the Gal1-4GlcNAc-R units of the acceptor substrates in an (2-3) linkage, and revealed that this sialytransferase does not prefer either of the two branches of a complex type diantennary glycopeptide acceptor for sialic acid attachment. These properties distinguish this enzyme from all other sialyltransferases characterized to date.Abbreviations NeuAc
N-acetylneuraminic acid
- CMP-NeuAc
cytidine 5-monophospho-N-acetylneuraminic acid
- GP-F2 and GP-F4
diantennary complex type glycopeptides from desialylated fibrinogen
- GP-Trf
diantennary complex type glycopeptide from desialylated transferrin
- LNT
Gal1-3GlcNAc1-3Gal1-4Glc (lacto-N-tetraose)
- 6-sialytransferase
CMP-NeuAc:Gal1-4GlcNAc-R (2-6)-sialytransferase
- 3-sialytransferaseO
CMP-NeuAc:Gal1-3GalNAc-R (2-3)-sialyltransferase
- 3-sialytransferase I
CMP-NeuAc:Gal1-3(4)GlcNAc-R (2-3)-sialyltransferase
- 3-sialytransferase II
CMP-NeuAc:Gal1-4GlcNAc-R (2-3)-sialytransferase 相似文献
17.
18.
The glucomannan isolated from larch holocellulose was hydrolyzed by a purified endo-d-β-mannanase. The products were fractionated by gel filtration on a Polyacrylamide gel in water and partition chromatography on ion exchange resins in 80% ethanol. The following oligosaccharides were isolated and identified: (a) 4-O-β-d-Manp-d-Man, (b) 4-O-β-d-Glcp-d-Man, (c) 4-O-β-d-Glcp-d-Glc, (d) O-β-d-Manp-(1 →4)-O-β-d-Manp-(1 →4)-d-Man, (e) O-β-dGlcp-(l →4)-O-β-d-Manp-(l →4)-d-Man, (f) O-β-d-Manp-(l →4)-Oβ-d-Glcp-(l →4)-d-Man, (g) O-β-d-Manp-(l →4)-O-[α-d-Galp-(l →6)]-d-Man, (h) O-β-d-Manp-(l →4)-O-β-d-Manp-(l →4)-O-β-d-Manp-(l →4)-d-Man, and (i) O-β-d-Glcp-(1 →4)-O-β-d-Manp-(1 →4)-O-β-d-Manp-(1 →4)-d-Man. 相似文献
19.
20.
V. Garcia-Campayo S. I. McCrae T. M. Wood 《World journal of microbiology & biotechnology》1994,10(1):64-68
An endo-(14)--d-xylanase from Neocallimastix frontalis was purified by anion-exchange chromatography. The enzyme had an apparent molecular mass of 30 kDa on SDS-PAGE and exhibited maximum activity at 50°C and at pH values between 6.0 and 6.6. Kinetic studies on the hydrolysis of xylo-oligosaccharides, ranging from xylobiose to xylodecaose, showed that xylohexaose and xyloheptaose were the preferred substrates for the enzyme and that xylobiose, xylotriose and xylotetraose were not hydrolysed. Xylose was not a product of the hydrolysis of any of the xylo-oligosaccharide substrates tested. The enzyme appeared to have a strong preference for the hydrolysis of the internal glycosidic bonds of the oligosaccharides, which is typical of endo-(14)--d-xylanase activity, but it differed from other fungal endo-(14)--d-xylanases in that it had uniform action on the various internal linkages in the xylo-oligosaccharides.V. Garcia-Campayo, S.I. McCrae and T.M. Wood are with The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB, UK 相似文献