首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carrot Argonaute1 (C-Ago1) was isolated from a subtractive cDNA library to obtain somatic embryogenesis related genes. C-Ago1 has three conserved domains, which are found in all other Argonautes. C-Ago1 has specific expression during somatic embryogenesis, which indicates that microRNA gene expression controlling system is required for somatic embryogenesis.  相似文献   

2.
3.
Mature embryonic axes were used for chickpea (Cicer arietinum L.) regeneration via somatic embryogenesis. Qualitative and quantitative estimation of protein profile during somatic embryogenesis by SDS-PAGE and densitometric analysis showed differential expression of various storage proteins at different stages of somatic embryo development, which was compared with the profile of developing seeds. Total protein content in somatic embryos of chickpea increased from globular stage [2.9 μg mg−1(f.m.)] to cotyledonary stage [4.8 μg mg−1(f.m.)] and then started decreasing during onset of maturation and germination [up to 1.5 μg mg−1(f.m.)]. Differential expression of seed storage proteins, late embryogenesis abundant (LEA) proteins and proteins related with stress response were documented at different stages of somatic embryogenesis. Germinating somatic embryos showed degradation products of several seed storage proteins and the appearance of new polypeptides (76.8, 67.6, 49.9 and 34.2 kDa), which were absent during differentiation of somatic embryos. A low molecular mass (17.7 kDa) polypeptide was uniformly present during all stages of somatic embryogenesis and it may belong to a group of stress-related proteins. This study describes the expression of true seed storage proteins like legumin, vicilin, convicilin and their subunits at different stages of somatic embryogenesis, which may serve as excellent markers for embryogenic pathway of regeneration in chickpea.  相似文献   

4.
在龙眼体胚发生早期的蛋白质组学研究中,发现1个体胚发生相关未知蛋白DlUP-3,通过简并引物结合RACE技术进行其基因全长序列克隆。结果显示:(1)克隆到的龙眼体胚发生相关未知蛋白基因DlUP-3的全长cDNA序列为1 681bp,开放阅读框由1 017个核苷酸组成,编码338个氨基酸(GenBank登录号为GQ167202)。(2)生物信息学分析发现,该基因推导蛋白分子量为36 854.2Da,pI为9.05;该蛋白为Ras蛋白质家族成员,具有ATP/GTP-binding site motif A(P-loop)结合位点和1个典型的Ras_like_GTPase superfamily组件,无典型信号肽结构,但有跨膜螺旋的亲水性蛋白;不规则卷曲是其最大量的结构元件,散布于整个蛋白质中。(3)实时荧光定量PCR分析显示,该基因在龙眼体胚发生过程中均有表达,其中以胚性愈伤组织阶段表达量最低,而球形胚阶段最高。研究表明,DlUP-3基因在龙眼体胚发生过程尤其是球形胚阶段有重要的作用,为进一步研究该基因在龙眼体胚发生过程中的功能奠定了基础。  相似文献   

5.
6.
It is well accepted that somatic embryogenesis serves a primary role in plant regeneration. However, it is also a model system to explore the regulatory and morphogenetic events in the life of a plant. To date, a suite of genes that serve important roles in somatic embryogenesis have been isolated and identified. In the present study, a novel gene designated as GmSERK1 was isolated from soybean (Glycine max (L.) Merr). Sequence and structural analysis determined that the GmSERK1 protein, which encodes 624 amino acids, belongs to the somatic embryogenesis receptor-like kinase (SERK) gene family. GmSERK1 shared all the characteristic domains of the SERK family, including five leucine-rich repeats, one proline-rich region motif, transmembrane domain, and kinase domains. DNA gel blot analysis indicated that a single copy of the GmSERK1 gene resides in the soybean genome. The GmSERK1 tissue-specific and induced expression patterns were explored using quantitative real-time PCR. Dissimilar expression levels in various tissues under different treatments were found. In addition, transient expression experiments in onion epidermal cells indicated that the GmSERK1 protein was located on the plasma membrane. The results from this study suggested that GmSERK1, a member of the SERK gene family, exhibits a broader role in various aspects of plant development and function, in addition to its basic functions in somatic embryogenesis.  相似文献   

7.
8.
Hu H  Xiong L  Yang Y 《Planta》2005,222(1):107-117
Here we report on the isolation and characterization of a somatic embryogenesis receptor-like kinase (OsSERK1) gene in rice (Oryza sativa). The OsSERK1 gene belongs to a small subfamily of receptor-like kinase genes in rice and shares a highly conserved gene structure and extensive sequence homology with previously reported plant SERK genes. Though it has a basal level of expression in various rice organs/tissues, as high expression level was detected in rice callus during somatic embryogenesis. Suppression of OsSERK1 expression in transgenic calli by RNA interference resulted in a significant reduction of shoot regeneration rate (from 72% to 14% in the japonica rice Zhonghua11). Overexpression of OsSERK1, however, increased the shoot regeneration rate (from 72% to 86%). Interestingly, OsSERK1 is significantly activated by the rice blast fungus, particularly during the incompatible interaction, and is associated with host cell death in Sekigushi lesion mimic mutants. This gene is also inducible by defense signaling molecules such as salicylic acid, jasmonic acid, and abscisic acid. Furthermore, constitutive overexpression of OsSERK1 in two rice cultivars led to an increase in host resistance to the blast fungus. Our data suggest that OsSERK1 may partially mediate defense signal transduction in addition to its basic role in somatic embryogenesis.  相似文献   

9.
Direct exposure of calluses of Lycium barbarum L. to an auxin-free medium can induce somatic embryogenesis. Somatic embryogenesis of Lycium barbarum L. is controlled artificially by regulating 2,4-D concentration. The total RNA that was isolated from calluses, embryonic calluses and early somatic embryos was used for analyzing differential genes expression. We obtained three cDNAs from early somatic embryogenesis which were not found in calluses. The results indicate that these cDNAs were early embryogenesis-specific cDNAs and this gene expression was induced in cultured calluses after a transfer to an auxin- free medium. A cDNA library was constructed using poly(A)+-RNA derived from early somatic embryos of Lycium barbarism L. Two full-length cDNAs were isolated from the library by differential screening. Northern blot hybridization analysis indicated that the expression of the full-length cDNA only existed in embryogenic calluses and early somatic embryos of Lycium barbarum L. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
11.
The inter-relationship between exogenous calcium (Ca2+) during cold pretreatment and cold-enhanced somatic embryogenesis was investigated using cell suspension cultures of Astragalus adsurgens Pall. Cell suspension was obtained from embryogenic callus and could be induced to form somatic embryos in the differentiation medium. Suspension cells, after cold-treatment at 8 °C for 2 to 3 wk, displayed an enhanced capacity for somatic embryogenesis as compared to those without cold pretreatment. Longer cold pretreatment (> 4 wk) resulted in the inhibition of somatic embryogenesis. The enhanced embryogenic response of cells to cold pretreatment was dependent on the Ca2+ level in the pretreatment medium. Ca2+ levels below 1 mM suppressed the cold-enhanced response. Addition of lanthanum into the pretreatment medium completely abolished the cold induced enhancement of somatic embryogenesis. These results suggest that embryogenic cells require a minimal concentration of Ca2+ during pretreatment for the expression of this cold-enhanced capacity for somatic embryogenesis in A.adsurgens and the influx of exogenous Ca2+ during pretreatment might also be involved.  相似文献   

12.
13.
In vitro regenerated corm with a shoot incubated on MS medium with modified combination of vitamins supplemented with 2 mg l–1 2,4-D, 1.5 mg l–1 BA and 1000 mg l–1 L-glutamine formed an embryogenic callus. On transfer to a hormone free medium the callus turned black and formed whitish spherical nodules on the peripheral region from which mature embryos grew out in about 40 days. Histological preparations at successive stages in development confirmed the origin of somatic embryos initiated from single cells of the callus. Detailed analysis of the ontogeny of the somatic embryogenesis and zygotic embryogenesis has been done in the present study. Comparison of the ontogenetic stages of the somatic embryogenesis to that of zygotic embryogenesis has shown that the early segmentation of the embryo, the organization of the embryonic apex, formation of cotyledon and epicotyl, the morphology and shape of the zygotic and somatic embryos of E. superbum at successive stages show remarkable similarities in spite of the different environments in which they have developed and differen-tiated.  相似文献   

14.
15.
A somatic embryogenesis receptor-like kinase (SERK) gene, designated as AcSERK1, was isolated from pineapple (Ananas comosus cv. Shenwan). AcSERK1 shared all the characteristic domains of the SERK family, including five leucine-rich repeats, one proline-rich region motif, transmembrane domain, and kinase domains. Somatic embryogenic cultures of pineapple were established following transfer of callus cultures to Murashige and Skoog (1962) medium containing 2,4-dichlorophenoxyacetic acid. The role of AcSERK1 during establishment of somatic embryogenesis in culture was investigated. The AcSERK1 was highly expressed during embryogenic competence acquisition and global embryo formation in culture. These findings were obtained along with morphological changes in callus cultures exhibiting embryogenic potential. Overall, levels of expression of AcSERK1 were lower in nonembryogenic tissues and organs than in embryogenic callus. In situ hybridization analysis revealed that AcSERK1 expression was detected in embryogenic tissues, including single competent cells, meristematic centers wherein embryogenic structures are formed, and global embryos. These results suggested that AcSERK1 expression was associated with induction of somatic embryogenesis and that it could be used as a potential marker gene to monitor the transition of pineapple callus tissues into competent and embryogenic cells and tissues.  相似文献   

16.
Gaj MD  Zhang S  Harada JJ  Lemaux PG 《Planta》2005,222(6):977-988
The capacity for somatic embryogenesis was studied in lec1, lec2 and fus3 mutants of Arabidopsis thaliana (L.) Heynh. It was found that contrary to the response of wild-type cultures, which produced somatic embryos via an efficient, direct process (65–94% of responding explants), lec mutants were strongly impaired in their embryogenic response. Cultures of the mutants formed somatic embryos at a low frequency, ranging from 0.0 to 3.9%. Moreover, somatic embryos were formed from callus tissue through an indirect route in the lec mutants. Total repression of embryogenic potential was observed in double (lec1 lec2, lec1 fus3, lec2 fus3) and triple (fus3 lec1 lec2) mutants. Additionally, mutants were found to exhibit efficient shoot regenerability via organogenesis from root explants. These results provide evidence that, besides their key role in controlling many different aspects of Arabidopsis zygotic embryogenesis, LEC/FUS genes are also essential for in vitro somatic embryogenesis induction. Furthermore, temporal and spatial patterns of auxin distribution during somatic embryogenesis induction were analyzed using transgenic Arabidopsis plants expressing GUS driven by the DR5 promoter. Analysis of data indicated auxin accumulation was rapid in all tissues of the explants of both wild type and the lec2-1 mutant, cultured on somatic embryogenesis induction medium containing 2,4-D. This observation suggests that loss of embryogenic potential in the lec2 mutant in vitro is not related to the distribution of exogenously applied auxin and LEC genes likely function downstream in auxin-induced somatic embryogenesis.  相似文献   

17.
Wheat leaf bases cultured for 1 day on 2,4-d (10 μM) display the induction of somatic embryogenesis. The induction of somatic embryogenesis by 2,4-d appears to be calcium-mediated as treatment of leaf bases with the calcium chelator, EGTA, prior to 2,4-d treatment, inhibited the induction of somatic embryogenesis. This sensitivity of auxin to reduced calcium levels can be reversed by calcium ions alone and not any other divalent cation like magnesium or zinc. Additionally, the expression of the three calcium-regulated genes, Triticum aestivum calmodulin binding protein kinase, calcium-dependent protein kinase, and putative calcium binding protein was analyzed in wheat leaf bases which suggest a specific role for Ca2+ in somatic embryogenesis. Application of the calcium ionophore, A23187, either alone or along with 2,4-d, induced somatic embryogenesis. This specificity for calcium was verified both by treatment with the calcium antagonist TMB8, and the elimination of calcium from the medium, resulting in reduction of somatic embryogenesis by 80%. Treatment with calcium channel blockers like verapamil and nifedipine, calcium antagonist, lanthanum, and calmodulin inhibitors chlorpromazine and fluphenazine, prior to the 2,4-d treatment, inhibited induction of somatic embryogenesis. The present study thus provides evidence for the involvement of calcium–calmodulin in the stimulus–response coupling of auxin-induced somatic embryogenesis in wheat leaf base system.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号