首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A molecular screening approach was developed in order to amplify the genomic region that codes for the α- and β-subunits of the nitrile hydratase (NHase) enzyme in rhodococci. Specific PCR primers were designed for the NHase genes from a collection of nitrile-degrading actinomycetes, but amplification was successful only with strains identified as Rhodococcus erythropolis. A hydratase PCR product was also obtained from R. erythropolis DSM 43066T, which did not grow on nitriles. Southern hybridization of other members of the nitrile-degrading bacterial collection resulted in no positive signals other than those for the R. erythropolis strains used as positive controls. PCR-restriction fragment length polymorphism-single-strand conformational polymorphism (PRS) analysis of the hydratases in the R. erythropolis strains revealed unique patterns that mostly correlated with distinct geographical sites of origin. Representative NHases were sequenced, and they exhibited more than 92.4% similarity to previously described NHases. The phylogenetic analysis and deduced amino acid sequences suggested that the novel R. erythropolis enzymes belonged to the iron-type NHase family. Some different residues in the translated sequences were located near the residues involved in the stabilization of the NHase active site, suggesting that the substitutions could be responsible for the different enzyme activities and substrate specificities observed previously in this group of actinomycetes. A similar molecular screening analysis of the amidase gene was performed, and a correlation between the PRS patterns and the geographical origins identical to the correlation found for the NHase gene was obtained, suggesting that there was coevolution of the two enzymes in R. erythropolis. Our findings indicate that the NHase and amidase genes present in geographically distinct R. erythropolis strains are not globally mixed.  相似文献   

2.
Rhodococcus rhodochrous J1 produces two kinds of cobalt-containing nitrile hydratases (NHases); one is a high molecular mass-NHase (H-NHase) and the other is a low molecular mass-NHase (L-NHase). Both NHases are composed of two subunits of different sizes (alpha and beta subunits). The H- and L-NHase genes were cloned into Escherichia coli by a DNA-probing method using the NHase gene of Rhodococcus sp. N-774, a ferric ion-containing NHase producing strain, as the hybridization probe and their nucleotide sequences were determined. In each of the H- and L-NHase genes, the open reading frame for the beta subunit was located just upstream of that for the alpha subunit, which probably belongs to the same operon. The amino acid sequences of each subunit of the H- and L-NHases from R. rhodochrous J1 showed generally significant similarities to those from Rhodococcus sp. N-774, but the arrangement of the coding sequences for two subunits is reverse of the order found in the NHase gene of Rhodococcus sp. N-774. Each of the NHase genes was expressed in E. coli cells under the control of lac promoter, only when they were cultured in the medium supplemented with CoCl2.  相似文献   

3.
The adipamidase of a mutant strainBrevibacterium sp. R312 involved in the degradation of adiponitrile to adipic acid was purified. Its N-terminal amino acid sequence was shown to be identical toBrevibacterium sp. R312 enantio-selective amidase andRhodococcus sp. N-774 amidase.  相似文献   

4.
The genes encoding an enantioselective nitrile hydratase (NHase) from Rhodococcus erythropolis AJ270 have been cloned and an active NHase has been produced in Escherichia coli. Maximal activity was found when the genes encoding the α- and β-subunits were transcribed as one unit and the gene encoding the P44k activator protein as a separate ORF on a single replicon. Addition of n-butyric acid and FeSO4 could improve NHase activity. Coexpression of the GroEL-GroES chaperone proteins increased activity in the absence of P44k protein but had no effect in the presence of P44k. The recombinant enzyme was highly enantioselective in the synthesis of S-(+)-3-benzoyloxy- 4-cyanobutyramide from the prochiral substrate 3-benzoyloxyglutaronitrile.  相似文献   

5.
The production of anthranilic acid (AnA) was investigated for 40 bacterial strains in the presence and absence of aniline. Resting cells of all aniline-assimilating bacteria tested produced AnA with aniline, but not without aniline. The cells of aniline-assimilating Rhodococcus erythropolis strains produced more AnA than those of other aniline-assimilating bacteria. Resting cells of several non-aniline-assimilating strains produced AnA in the absence of aniline. However, its production by these strains was much lower than that by the Rhodococcus strains. The production of AnA by cells of aniline-assimilating R. erythropolis AN-13 was promoted by aliphatic monocarboxylates, ATP, biotin and coenzyme A, and repressed by catechol analogues, N-ethylmaleimide and iodoacetate. On the other hand, its production by non-aniline-assimilating Pseudomonas sp. AN-21 was repressed by glucose, mannose and some amino acids.  相似文献   

6.
A molecular screening approach was developed in order to amplify the genomic region that codes for the alpha- and beta-subunits of the nitrile hydratase (NHase) enzyme in rhodococci. Specific PCR primers were designed for the NHase genes from a collection of nitrile-degrading actinomycetes, but amplification was successful only with strains identified as Rhodococcus erythropolis. A hydratase PCR product was also obtained from R. erythropolis DSM 43066(T), which did not grow on nitriles. Southern hybridization of other members of the nitrile-degrading bacterial collection resulted in no positive signals other than those for the R. erythropolis strains used as positive controls. PCR-restriction fragment length polymorphism-single-strand conformational polymorphism (PRS) analysis of the hydratases in the R. erythropolis strains revealed unique patterns that mostly correlated with distinct geographical sites of origin. Representative NHases were sequenced, and they exhibited more than 92.4% similarity to previously described NHases. The phylogenetic analysis and deduced amino acid sequences suggested that the novel R. erythropolis enzymes belonged to the iron-type NHase family. Some different residues in the translated sequences were located near the residues involved in the stabilization of the NHase active site, suggesting that the substitutions could be responsible for the different enzyme activities and substrate specificities observed previously in this group of actinomycetes. A similar molecular screening analysis of the amidase gene was performed, and a correlation between the PRS patterns and the geographical origins identical to the correlation found for the NHase gene was obtained, suggesting that there was coevolution of the two enzymes in R. erythropolis. Our findings indicate that the NHase and amidase genes present in geographically distinct R. erythropolis strains are not globally mixed.  相似文献   

7.
Nitrile hydratase (NHase), which catalyzes the hydration of nitriles to amides, is the key enzyme for the production of amides in industries. However, the poor stability of this enzyme under the reaction conditions is a drawback of its industrial application. In this study, we aimed to improve the stability of NHase (PpNHase) from Pseudomonas putida NRRL-18668 using a homologous protein fragment swapping strategy. One thermophilic NHase fragment from Comamonas testosteroni 5-MGAM-4D and two fragments from Pseudonocardia thermophila JCM3095 were selected to swap the corresponding fragments of PpNHase. Seven chimeric NHases were designed using STAR (site targeted amino recombination) software and molecular dynamics to determine the crossover sites for fragment recombination. All constructed chimeric NHases showed 1.4- to 3.5-fold enhancement in thermostability and six of them become more tolerant to high-concentration product. Notably, one of these NHases, 3AB, exhibited a 1.4 ± 0.05-fold increase in activity compared to the wild-type PpNHase. Circular dichroism spectrum analysis and homology modeling revealed that the 3AB slightly differed in secondary structure from wild-type PpNHase. The 3AB constructed in this study is useful for further industrial application, and the method for designing the chimeric protein using homologous protein fragment swapping without a decrease in activity may be a strategy to improve the stability of other enzymes.  相似文献   

8.
Uptake of cesium, potassium, and rubidium by Rhodococcus erythropolis CS98 and Rhodococcus sp. strain CS402 followed Michaelis-Menten saturation kinetics. The Km’s for uptake of these monovalent cations by R. erythropolis CS98 and Rhodococcus sp. strain CS402 were 136 and 436μM for Cs+, 65 and 101μM for K+, and 102 and 113μM for Rb+, respectively. These values were significantly lower than those of Rhodobacter capsulatus and the Kup system in Escherichia coli. Potassium was a competitive inhibitor of cesium uptake by these strains, suggesting that cesium was accumulated by the potassium transport system. Although an uncoupler, FCCP, inhibited the cesium transport system, this system was not repressed by high concentrations of potassium in both Rhodococcus strains. However, the specificity in both Rhodococcus strains was different from the Trk system. These results suggest that the potassium transport system which can transport cesium in both Rhodococcus strains may be novel.  相似文献   

9.
For investigation of an unknown open reading frame which is present upstream of the nitrile hydratase (NHase) gene from Rhodococcus sp. N-774, a longer DNA fragment covering the entire gene was cloned in Escherichia coli. Nucleotide sequencing and detailed subcloning experiments predicted a single open reading frame consisting of 521 amino acid residues of Mr 54,671. The amino acid sequence, especially its NH2-terminal portion, showed significant homology with those of indoleacetamide hydrolases from Pseudomonas savastanoi and Agrobacterium tumefaciens, and acetamidase from Aspergillus nidulans. The 521-amino acid coding region was therefore expressed by use of the E. coli lac promoter in E. coli, and was found to direct a considerable amidase activity. This amidase hydrolyzed propionamide efficiently, and also hydrolyzed, at a lower efficiency, acetamide, acrylamide and indoleacetamide. These data clearly show that the unknown open reading frame present upstream of the NHase coding region encodes an amidase. Because the TAG translational stop codon of the amidase is located only 75 base pairs apart from the ATG start codon of the alpha-subunit of NHase, these genes are probably translated in a polycistronic manner.  相似文献   

10.
An enantiomer-selective amidase active on several 2-aryl and 2-aryloxy propionamides was identified and purified from Brevibacterium sp. strain R312. Oligonucleotide probes were designed from limited peptide sequence information and were used to clone the corresponding gene, named amdA. Highly significant homologies were found at the amino acid level between the deduced sequence of the enantiomer-selective amidase and the sequences of known amidases such as indoleacetamide hydrolases from Pseudomonas syringae and Agrobacterium tumefaciens and acetamidase from Aspergillus nidulans. Moreover, amdA is found in the same orientation and only 73 bp upstream from the gene coding for nitrile hydratase, strongly suggesting that both genes are part of the same operon. Our results also showed that Rhodococcus sp. strain N-774 and Brevibacterium sp. strain R312 are probably identical, or at least very similar, microorganisms. The characterized amidase is an apparent homodimer of Mr 2 x 54,671 which exhibited under our conditions a specific activity of about 13 to 17 mumol of 2-(4-hydroxyphenoxy)propionic R acid formed per min per mg of enzyme from the racemic amide. Large amounts of an active recombinant enzyme could be produced in Escherichia coli at 30 degrees C under the control of an E. coli promoter and ribosome-binding site.  相似文献   

11.
Summary Five strains of the Rhodococcus and Gordonia genera were evaluated for their potential use in bioremediation of polycyclic aromatic hydrocarbons (PAH) with or without another substrate (co-substrate). Their ability to produce biosurfactants or to degrade phenanthrene when growing on glucose, hexadecane and rapeseed oil was tested in liquid medium at 30 °C. All strains showed biosurfactant activity. The highest reduction in surface tension was recorded in whole cultures of Rhodococcus sp. DSM 44126 (23.1%) and R. erythropolis DSM 1069 (21.1%) grown on hexadecane and Gordonia sp. APB (20.4%) and R. erythropolis TA57 (18.2%) grown on rapeseed oil. Cultures of Gordonia sp. APB and G. rubripertincta formed emulsions when grown on rapeseed oil. After 14 days of incubation, Rhodococcus sp. DSM 44126 degraded phenanthrene (initial concentration 100 μg ml−1) as sole carbon source (79.4%) and in the presence of hexadecane (80.6%), rapeseed oil (96.8%) and glucose (below the limit of detection). The other strains degraded less than 20%, and then with a co-substrate only. Rhodococcus sp. DSM 44126 was selected and its performance evaluated in soil spiked with a mixture of PAH (200 mg kg−1). The effect of the addition of 0, 0.1 and 1% rapeseed oil as co-substrate was also tested. Inoculation enhanced the degradation of phenanthrene (55.7% and 95.2% with 0.1% oil and without oil respectively) and of anthracene (29.2% with 0.1% oil). Approximately 96% of anthracene and 62% of benzo(a)pyrene disappeared from the soil (inoculated and control) after 14 days and anthraquinone was detected as a metabolite. Rhodococcus sp. DSM 44126 was identified as Rhodococcus wratislaviensis by 16S rRNA sequencing and was able to degrade anthracene as sole carbon source in liquid culture.  相似文献   

12.
Rhodococcus strains not only have been widely used in industries but also have a potential ability of producing new structural natural products. Integration of heterologous genes into chromosomes of Rhodococcus strains for gene expression can facilitate the studies and applications of these strains. A conjugation system was optimized in order to transfer enhanced green fluorescent protein (EGFP) encoding gene as a reporter from Escherichia coli into Rhodococcus erythropolis D-1. The influence of three native ribosome binding sites (RBSs) and two designed RBSs on the target protein production in R. erythropolis D-1 was also characterized. An efficient conjugation system of R. erythropolis D-1 was established to integrate EGFP gene into its chromosome. Among of five RBSs, RBS3 showed the highest translational activity in R. erythropolis D-1.  相似文献   

13.
We previously isolated Rhodococcus sp. 065240, which catalyzes the defluorination of benzotrifluoride (BTF). In order to investigate the mechanism of this degradation of BTF, we performed proteomic analysis of cells grown with or without BTF. Three proteins, which resemble dioxygenase pathway enzymes responsible for isopropylbenzene degradation from Rhodococcus erythropolis BD2, were induced by BTF. Genomic PCR and DNA sequence analysis revealed that the Rhodococcus sp. 065240 carries the gene cluster, btf, which is highly homologous to the ipb gene cluster from R. erythropolis BD2. A mutant strain, which could not catalyze BTF defluorination, was isolated from 065240 strain by UV mutagenesis. The mutant strain had one mutation in the btfT gene, which encodes a response regulator of the two component system. The defluorinating ability of the mutant strain was recovered by complementation of btfT. These results suggest that the btf gene cluster is responsible for degradation of BTF.  相似文献   

14.
NADP+-dependent aminoalcohol dehydrogenase (AADH) of Rhodococcus erythropolis MAK154 produces double chiral aminoalcohols, which are used as pharmaceuticals. However, the genetic manipulation of Rhodococcus strains to increase their production of such industrially important enzymes is not well studied. Therefore, I aimed to construct Rhodococcus expression vectors, derived from the RhodococcusEscherichia coli shuttle vector pRET1102, to express aadh. The plasmid pRET1102 could be transformed into many actinomycete strains, including R. erythropolis. The transformation ef?ciency for a species closely related to R. erythropolis was higher than that for other actinomycete strains. Promoters of various strengths, hsp, 1200rep, and TRR, were obtained from Gram-positive bacteria. The activity of TRR was stronger than that of hsp and 1200rep. The aadh-expressing plasmid pRET1172 with TRR could be transformed into many actinomycete strains to increase their AADH production. The Rhodococcus expression vector, pRET11100, constructed by removing aadh from the pRET1172 plasmid may be useful for bioconversion.  相似文献   

15.
The transition metal (iron or cobalt) is a mandatory part that constitutes the catalytic center of nitrile hydratase (NHase). The incorporation of the cobalt ion into cobalt-containing NHase (Co-NHase) was reported to depend on self-subunit swapping and the activator of the Co-NHase acts as a self-subunit swapping chaperone for subunit exchange. Here we discovered that the activator acting as a metallochaperone transferred the cobalt ion into subunit-fused Co-NHase. We successfully isolated two activators, P14K and NhlE, which were the activators of NHases from Pseudomonas putida NRRL-18668 and the activator of low-molecular-mass NHase from Rhodococcus rhodochrous J1, respectively. Cobalt content determination demonstrated that NhlE and P14K were two cobalt-containing proteins. Substitution of the amino acids involved in the C-terminus of the activators affected the activity of the two NHases, indicating that the potential cobalt-binding sites might be located at the flexible C-terminal region. The cobalt-free NHases could be activated by either of the two activators, and both the two activators activated their cognate NHase more efficiently than did the noncognate ones. This study provided insights into the maturation of subunit-fused NHases and confirmed the metallochaperone function of the self-subunit swapping chaperone.  相似文献   

16.
A new acylamidase was isolated from Rhodococcus erythropolis TA37 and characterized. N-Substituted acrylamides (isopropyl acrylamide, N,N-dimethyl-aminopropyl acrylamide, and methylene-bis-acrylamide), acid para-nitroanilides (4′-nitroacetanilide, Gly-pNA, Ala-pNA, Leu-pNA), and N-acetyl derivatives of glycine, alanine, and leucine are good substrates for this enzyme. Aliphatic amides (acetamide, acrylamide, isobutyramide, n-butyramide, and valeramide) are also used as substrates but with less efficiency. The enzyme subunit mass by SDS-PAGE is 55 kDa. Maximal activity is exhibited at pH 7–8 and 55°C. The enzyme is stable for 15 h at 22°C and for 0.5 h at 45°C. The Michaelis constant (K m) is 0.25 mM with Gly-pNA and 0.55 mM with Ala-pNA. The acylamidase activity is suppressed by inhibitors of serine proteases (phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate) but is not suppressed by inhibitors of aliphatic amidases (acetaldehyde and nitrophenyl disulfides). The N-terminal amino acid sequence of the acylamidase is highly homologous to those of two putative amidases detected from sequenced R. erythropolis genomes. It is suggested that the acylamidase together with the detected homologs forms a new class within the amidase signature family.  相似文献   

17.
A moderate thermophile, Bacillus sp. BR449 was previously shown to exhibit a high level of nitrile hydratase (NHase) activity when growing on high levels of acrylonitrile at 55 degrees C. In this report, we describe the cloning of a 6.1 kb SalI DNA fragment encoding the NHase gene cluster of BR449 into Escherichia coli. Nucleotide sequencing revealed six ORFs encoding (in order), two unidentified putative proteins, amidase, NHase beta- and alpha-subunits and a small putative protein of 101 amino acids designated P12K. Spacings and orientation of the coding regions as well as their gene expression in E. coli suggest that the beta-subunit, alpha-subunit, and P12K genes are co-transcribed. Analysis of deduced amino acid sequences indicate that the amidase (348 aa, MW 38.6 kDa) belongs to the nitrilase-related aliphatic amidase family, and that the NHase beta- (229 aa, MW 26.5 kDa) and alpha- (214 aa, MW 24.5 kDa) subunits comprise a cobalt-containing member of the NHase family, which includes Rhodococcus rhodochrous J1 and Pseudomonas putida 5B NHases. The amidase/NHase gene cluster differs both in arrangement and composition from those described for other NHase-producing strains. When expressed in Escherichia coli DH5alpha, the subcloned NHase genes produced significant levels of active NHase enzyme when cobalt ion was added either to the culture medium or cell extracts. Presence of the P12K gene and addition of amide compounds as inducers were not required for this expression.  相似文献   

18.
The amidase gene from Rhodococcus rhodochrous M8 was cloned by PCR amplification with primers developed by use of peptide amino acid sequences obtained after treating amidase with trypsin. Nucleotide sequence analysis of this gene revealed high homology with aliphatic amidases from R. erythropolis R312 and Pseudomonas aeruginosa. Considering the substrate specificity and the results of DNA analysis, amidase from R. rhodochrous M8 was assigned to the group of aliphatic amidases preferentially hydrolyzing short-chain aliphatic amides. The amidase gene was expressed in cells of Escherichia coli from the self promoter and from the lac promoter. To clone a fragment of R. rhodochrous M8 chromosome (approximately 9 kb), containing the entire structural gene and its flanking regions, plasmid pRY1 that can be integrated into the chromosome via homology regions was used. No sequences of the nitrile hydratase gene, the second key gene of nitrile degradation in strain R. rhodochrous M8, were detected. Thus, genes encoding amidase and nitrile hydratase in strain R. rhodochrous M8 are not organized into a single operon despite their common regulation.  相似文献   

19.
The nitrile hydratase (NHase) of Pseudomonas chlororaphis B23, which is composed of two subunits, alpha and beta, catalyzes the hydration of nitrile compounds to the corresponding amides. The NHase gene of strain B23 was cloned into Escherichia coli by the DNA-probing method with the NHase gene of Rhodococcus sp. strain N-774 as the hybridization probe. Nucleotide sequencing revealed that an amidase showing significant similarity to the amidase of Rhodococcus sp. strain N-774 was also coded by the region just upstream of the subunit alpha-coding sequence. In addition to these three proteins, two open reading frames, P47K and OrfE, were found just downstream of the coding region of subunit beta. The direction and close locations to each other of these open reading frames encoding five proteins (amidase, subunits alpha and beta, P47K, and OrfE, in that order) suggested that these genes were cotranscribed by a single mRNA. Plasmid pPCN4, in which a 6.2-kb sequence covering the region coding for these proteins is placed under control of the lac promoter, directed overproduction of enzymatically active NHase and amidase in response to addition of isopropyl-beta-D-thiogalactopyranoside. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cell extract showed that the amount of subunits alpha and beta of NHase was about 10% of the total cellular proteins and that an additional 38-kDa protein probably encoded by the region upstream of the amidase gene was also produced in a large amount. The 38-kDa protein, as well as P47K and OrfE, appeared to be important for efficient expression of NHase activity in E. coli cells, because plasmids containing the NHase and amidase genes but lacking the region coding for the 38-kDa protein or the region coding for P47K and OrfE failed to express efficient NHase activity.  相似文献   

20.
The gene for an enantioselective amidase was cloned from Rhodococcus erythropolis MP50, which utilizes various aromatic nitriles via a nitrile hydratase/amidase system as nitrogen sources. The gene encoded a protein of 525 amino acids which corresponded to a protein with a molecular mass of 55.5 kDa. The deduced complete amino acid sequence showed homology to other enantioselective amidases from different bacterial genera. The nucleotide sequence approximately 2.5 kb upstream and downstream of the amidase gene was determined, but no indications for a structural coupling of the amidase gene with the genes for a nitrile hydratase were found. The amidase gene was carried by an approximately 40-kb circular plasmid in R. erythropolis MP50. The amidase was heterologously expressed in Escherichia coli and shown to hydrolyze 2-phenylpropionamide, α-chlorophenylacetamide, and α-methoxyphenylacetamide with high enantioselectivity; mandeloamide and 2-methyl-3-phenylpropionamide were also converted, but only with reduced enantioselectivity. The recombinant E. coli strain which synthesized the amidase gene was shown to grow with organic amides as nitrogen sources. A comparison of the amidase activities observed with whole cells or cell extracts of the recombinant E. coli strain suggested that the transport of the amides into the cells becomes the rate-limiting step for amide hydrolysis in recombinant E. coli strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号