首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dry seeds of soybean [Glycine max (L.) Merr. var. Bay] were irradiated by X-rays (21.4 kR) and the M2 generations were examined for the oleic acid content in their oil. The genetic variability of oleic acid content in the oil of the Bay variety was significantly increased by the X-ray treatment when compared with the Bay control. A mutant, designated as M23, was selected from 2747 M2 plants, having an oleic acid content of 46.1%, twice as much as that in the normal Bay variety. A distinct inverse relationship was observed between the oleic and linoleic acid contents in M23. Mutant M23 isolated from the M2 generations was confirmed to be always associated with a high oleic acid content under different environmental conditions in the M3 generations.  相似文献   

2.
 Stearic acid is one of the two saturated fatty acids found in soybean [Glycine max (L.) Merr.] oil, with its content in the seed oil of commercial cultivars averaging 4.0%. Two mutants, KK-2 and M25 with two- and six-fold higher stearic acid contents in the seed oil than cv ‘Bay’, were identified after X-ray seed irradiation. Our objective was to determine the genetic control of high stearic acid content in these mutants. Reciprocal crosses were made between each mutant and ‘Bay’, and between the two mutants. No maternal effect for stearic acid content was observed from the analysis of F1 seeds in any of the crosses. Low stearic acid content in ‘Bay’ was partially dominant to high stearic acid content in KK-2 and M25, and high stearic acid content in KK-2 was partially dominant to high stearic acid content in M25. Cytoplasmic effects were not observed, as demonstrated by the lack of reciprocal cross differences for stearic acid content in our analysis of F2 seeds from F1 plants. The stearic acid content in F2 seeds of KK-2בBay’ and M25בBay’ crosses segregated into three phenotypic classes which satisfactorily fit a 1:2:1 ratio, indicating that high stearic acid content in KK-2 and M25 was controlled by recessive alleles at a single locus. The data for stearic acid content in F2 seeds of the KK-2×M25 cross satisfactorily fit a 3:9:1:3 phenotypic ratio. The F2 segregation ratio and the segregation of F3 seeds from individual F2 plants indicated that KK-2 and M25 have different alleles at different loci for stearic acid content. The alleles in KK-2 and M25 have been designated as st 1 and st 2, respectively. The stearic acid content (>30.0%) found in the st 1 st 1 st 2 st 2 genotype is the highest known to date in soybean, but it was not possible to develop the line with this genotype because the irregular seeds failed to grow into plants after germination. Therefore, tissue culture methods must be developed to perpetuate this genotype. Received: 28 March 1997 / Accepted: 18 April 1997  相似文献   

3.
A mutant line, M23, of soybean [Glycine max (L.) Merr.] was found to have two fold increases in oleic acid content in the seed oil compared with the original variety, Bay. Our objective was to determine the inheritance of the high oleic acid content in this mutant. Reciprocal crosses were made between M23 and Bay. There were no maternal and cytoplasmic effects for oleic acid content. The F1 seeds and F1 plants were significantly different from either parents or the midparent value, indicating partial dominance of oleic acid content in these crosses. The oleic acid content segregated in the F2 seeds and F2 plants in a trimodal pattern with normal, intermediate and high classes, satisfactorily fitting a 121 ratio. The seeds of a backcross between M23 and F1 segregated into intermediate and high classes in a ratio of 11. These results indicated that oleic acid content was controlled by two alleles at a single locus with a partial dominant effect. Thus, the allele in M23 was designated ol and the genotypes of M23 and Bay were determined to be olol and 0l0l, respectively. The oleic acid contents of the F2 seeds and F2 plants were inversely related with the linoleic acid content which segregated in a trimodal pattern with normal, intermediate and low classes in a 121 ratio. Thus, it was assumed that the low linoleic acid content in M23 was also controlled by the ol alleles. Because a diet with high oleic acid content reduces the content of low density lipoprotein cholesterol in blood plasma, the mutant allele, ol, would be useful in improving soybean cultivars for high oleic acid content.  相似文献   

4.
This experiment assessed the biochemical changes in fenugreek plants exposed to gamma radiation. Two pot experiments were carried out during two growing seasons of 2015 and 2016. Seeds were subjected to five doses of gamma irradiation (25, 50, 100, 200 and 400?Gy) and were immediately planted into soil pots in a greenhouse. The experimental analysis was performed in M1 and M2 generations. Significant differences between irradiated and control plants were detected for most studied characters in M1 and M2 generations. It was demonstrated that low doses of gamma irradiation led to gradually increases in growth, yield characters, leaf soluble protein concomitantly with increases in the contents of phenolic and flavonoids compounds particularly at 100?Gy. These changes were accompanied by a substantial increase in ascorbic acid, α-tocopherol and retinol contents. Proline content was increased under all doses of gamma rays in M1 generation and the highest amount of proline was obtained at 200?Gy with visible decrease in M2 generation under the same dose. Meanwhile, the highest dose of gamma radiation (400?Gy) decreased all the studied parameters in both mutagenic generations as compared with control plants. In addition, gamma irradiation doses induced changes in DNA profile on using five primers and caused the appearance and disappearance of DNA polymorphic bands with variation in their intensity. These findings confirm the effectiveness of relatively low doses of gamma rays on improving the physiological and biochemical criteria of fenugreek plants.  相似文献   

5.
Effects of zinc (12–180 μM) alone and in mixtures with 12 μM Cd on metal accumulation, dry masses of roots and shoots, root respiration rate, variable to maximum fluorescence ratio (FV/FM), and content of photosynthetic pigments were studied in hydroponically cultivated chamomile (Matricaria recutita) plants. The content of Zn in roots and shoots increased with the increasing external Zn concentration and its accumulation in the roots was higher than that in the shoots. While at lower Zn concentrations (12 and 60 μM) the presence of 12 μM Cd decreased Zn accumulation in the roots, treatment with 120 and 180 μM Zn together with 12 μM Cd caused enhancement of Zn content in the root. Presence of Zn (12–120 μM) decreased Cd accumulation in roots. On the other hand, Cd content in the shoots of plants treated with Zn + Cd exceeded that in the plants treated only with 12 μM Cd. Only higher Zn concentrations (120 and 180 μM) and Zn + Cd mixtures negatively influenced dry mass, chlorophyll (Chl) and carotenoid content, FV/FM and root respiration rate. Chl b was reduced to a higher extent than Chl a.  相似文献   

6.
Abstract The effects of gibberellic acid (GA3) on whole sunflower (Helianthus annuus L.) plants grown at three potassium (K) levels (0.0, 0.5 and 5.0 mM) were studied. A tenfold increase in the length of the first internode was observed when plants grown without K were treated with GA3. The uneven K distribution along the plant (higher K content in the higher internodes) was enhanced by GA3 treatment. Gibberellic acid increased the content of reducing sugars, especially in K-deficient plants. An increase in the K level in the nutrient solution resulted in a decrease of the osmotic potential of stem segments. Osmotic potential differences within the elongating first internode were increased by GA3 treatment.  相似文献   

7.
In order to enlarge the potential resources of drought-tolerant peanuts, we conducted in vitro mutagenesis with Pingyangmycin (PYM) as the mutagen as well as directed screening on a medium supplemented with Hydroxyproline (HYP). After being extracted from mature seeds (cv. Huayu 20), the embryonic leaflets were cultured on somatic embryogenesis-induction medium with 4 mg/L PYM and the generated embryos were successively transferred to a germination medium with 4 and then 8 mmol/L HYP to screen HYP-tolerant plantlets. After that, these plantlets were grafted and transplanted to the experimental field. In the next generation, all seeds were sown in the field, and phenotype variation and trait segregation can be observed in most of the offspring (M2 generation). The M3 generation individuals were subjected to drought stress at the seedling stages. The activities of SOD and POD were substantially increased in eight offspring of 11 HYP-tolerant, regenerated plants than in their mutagenic parents. To determine the correlation between mutant phenotypes and genomic modification, we carried out a comparison of the DNA polymorphisms between the mutagenic parents and 13 M3 generation individuals from different HYP-tolerant, regenerated plants with SSR primers. Results showed that most mutants and parent plants had signs of polymorphisms. Under drought stress, some M3 generation individuals of 10 original HYP-tolerant, regenerated plants produced more pods than the mutagenic parent; twenty individuals among them produced >60 g pods/plant. M4-generation seeds were tested for quality characteristics by Near Infrared Spectroscopy (NIS) and nine individuals with higher protein content (>30%) and 21 individuals with higher oil content (>58%) were screened. We concluded that the use of PYM-based in vitro mutagenesis in combination with directed screening with HYP is effective for the creation of potential drought-tolerant mutants of peanut.  相似文献   

8.
Summary The aim of the experiment was to study the possibility of facilitating the gene transfer and reducing the number of required backcrosses through pollen irradiation and subsequent selection of F1M1 plants containing a very high proportion of sterile pollen as male parent for backcrossing. Anthers of a donor line, C-3-1, were irradiated with 1,500 rad -rays and the pollen used for pollination of a recipient genotype W-8 which posseses a number of recessive marker genes. Five F1M2 plants containing more than 80% sterile pollen grains and one semi-sterile plant were selected and used for backcross to W-8. The segregation pattern of four characters expressed in the first backcross generation [W–8×(W–8×C–3–1)] was assessed and compared with the non-irradiated control. A changed segregation pattern was observed (in some cases even non-transfer of a paternal allele) as well as a shift towards more plants possessing the investigated maternal alleles. A scheme for backcross procedure in combination with pollen irradiation is discussed.  相似文献   

9.
Summary Chickpea was micropropagated by axillary shoot proliferation (ASP) and modified single node culture (MSNC) methods. Maximum propagule proliferation occurred on Murashige and Skoog (MS) medium enriched with 1–10 μM N6-benzyladenine and 0.01 μM α-naphthaleneacetic acid. The propagules were rooted on MS medium containing 1 μM 3-indolebutyric acid and B5 vitamins. Regenerated plants were fertile and phenotypically similar to control plants grown from seed. The MSNC method was four times more efficient than the ASP method in terms of the number of plants produced per explant.  相似文献   

10.
Four-leaf white clover is not found easily in nature due to its low appearance rate (1 in 10,000). Because people believe that it brings good luck and like to either keep it or present it to a loved one, it has commercial and ornamental value. To breed four-leaf clover, we exposed its flowers to γ-rays at the pollination stage. The M1 seeds produced following doses at 25–100 Gy showed an approximately 74% germination rate, with seedling survival at 46%. In the M1 generation of plants irradiated within that dose range, we found an increased frequency of four leaflets. One of them, Jeju Lucky-1 (JL-1), had a frequency of about 60%. To see whether that mutation was somaclonal or genetic, we observed its M2 generation and found that such a phenotype reappeared. Although our results demonstrated that the irradiation of fully mature flowers led to a higher frequency of 4-leaflets, we could not clearly explain the genetic mechanism involved. We suggest that JL-1 is valuable as a new variety, without further genetic fixation, because white clover can be propagated vegetatively by stolons. I.-J. Song and H.-G. Kang contributed equally to this work.  相似文献   

11.
Seed lipids of oilseed rape (Brassica napus) usually contain small proportions (<3%) of stearic acid. The objective of this study was to increase the content of stearic fatty␣acid in rapeseed oil. An antisense down-regulation of the endogenous stearoyl-ACP desaturase (SAD) catalysing the reaction step from stearic to oleic acid in two different genetic backgrounds was studied. The result of down-regulation of the SAD yielded an about 10-fold increase of stearic acid from 3.7% up to 32% in single seeds of transgenic low-erucic acid rapeseed (LEAR), while high-erucic acid rapeseed (HEAR) showed a 4-fold increase of C18:0 from 1% up to 4%. It could be shown in pooled T2 seed material of LEAR rapeseed, that the stearic acid content is highly correlated with the down-regulation of SAD as indicated by the␣stearate desaturation proportion (SDP). The importance of the promoter strength for the alteration of a trait was confirmed in this study as no change in the fatty acid composition of transgenic plants was achieved with gene constructs controlled by the weak FatB4 seed-specific promoter from Cuphea lanceolata.Karim Zarhloul and Christof Stoll have contributed in equal parts to the present work  相似文献   

12.
Abstract

Salicylic acid (SA) treatment reduces the damaging action by water deficit on growth and accelerates a restoration of growth processes. The aim of the present work was to study the physiological and biochemical alteration induced by SA in lemongrass plants under stress conditions. Therefore, a pot culture experiment was conducted to test whether SA application at concentration of (10?5 M) through foliar spray could protect lemongrass (Cymbopogon flexuosus Steud. Wats.) varieties (Neema and Krishna), subjected to drought stress on the basis of growth parameters and biochemical constituents, proline metabolism and quality attributes including citral content. The treatments were as follows: (i) 100% FC + 0 SA; (ii) 75% FC + 0 SA; (iii) 50% FC + 0 SA; (iv) 75% FC + 10?5 M SA; and (v) 50% FC + 10?5 M SA. The growth parameters were significantly reduced under the applied water stress levels; however, foliar application of salicylic acid (10?5 M) improved the growth parameters in stress-affected plants. The plants under water stress exhibited a significant increase in activities of nitrate reductase and carbonic anhydrase, and electrolyte leakage, proline content, free amino acid and in PEP carboxylase activity. Content and yield of essential oil also significantly decreased in plants that faced water stress. Thus, it was concluded that variety Neema is the more tolerant variety as compared to Krishna on the basis of content and oil yield and well adapted to drought stress conditions.  相似文献   

13.
A detailed kinetic study was carried out to investigate the porcine pancreatic lipase-catalysed esterification reactions of p-cresol–acetic acid and lactic acid–stearic acid. The kinetic data were in agreement with a Ping Pong Bi–Bi mechanism being followed by the enzyme, where inhibition is indicated in the presence of p-cresol and lactic acid in the respective reactions. Mathematical analyses of experimentally observed initial rates yielded various kinetic parameters, K m(p-cresol) = 0.1, K m(acetic acid) = 0.54, K m(lactic acid) = 0.059 M, K m(stearic acid) = 0.04 M, V max(p-cresol–acetic acid) = 13.2(h–1), V max(lactic acid–stearic acid) = 0.00163 M/h, K i(p-cresol) = 0.59 and K i(lactic acid) = 0.079 M. The K m and K i values of p-cresol and lactic acid observed in the respective reactions showed both the competitive nature of binding between the substrates p-cresol and acetic acid on the one hand and lactic acid and stearic acid on the other and the inhibitory nature of p-cresol and lactic acid.  相似文献   

14.
The karyotypes of biomorphologically abnormal cotton (Gossypium hirsutum L.) plants obtained in M2 after pollination with pollen irradiated at dose rates 10, 15, 20, and 25 Gy were studied. Various genomic and chromosomal mutations were detected in 57 M2 families. The primary monosomics isolated in M2 were found to be cytologically more stable and more viable, since they had higher meiotic index, pollen fertility, and seed formation. In M2, a decrease in the number of plants with multiple karyotype aberrations and interchromosomal exchanges with high frequency of multivalent formation was observed. The multivalent configurations had different types and chromosome disjunctions. Their pollen fertility was higher than in translocants found in M1. Desynapsis often occurred in M2, including plants with chromosome deficiency or rearrangements. The variation in the number of univalents in various cells was found to result from different expression of synaptic genes. The results indicate stabilization of karyotypes, increase in cytologic stability and viability, and the absence of sterility in aberrant plants.  相似文献   

15.
Cytogenetic analysis of M2 plants after irradiation of cotton by thermal neutrons was performed in 56 families. In 40 plants of 27 M2 families, different abnormalities of chromosome pairing were found. These abnormalities were caused by primary monosomy, chromosomal interchange, and desynapsis. The presence of chromosome aberrations in some cases decreased meiotic index and pollen fertility. Comparison of the results of cytogenetics analysis, performed in M1 and M2 after irradiation, showed a nearly twofold decrease in the number of plants with chromosomal aberrations in M2, as well as narrowing of the spectrum of these aberrations. The latter result is explained by the fact that some mutations are impossible to detect in subsequent generations because of complete or partial sterility of aberrant M1 plants. It was established that the most efficient radiation doses for inducing chromosomal aberrations in the present study were 15 and 25 Gy, since they affected survival and fertility of altered plant to a lesser extent.  相似文献   

16.
The influence of different Al concentrations, (0, 60 and 120 M Al) on growth and internal concentrations of Al, Si and selected organic acids was analysed in plants of teosinte (Zea mays L. ssp. mexicana), a wild form of maize from acid soils from Mexico. The plants were grown in nutrient solutions (pH 4.0) with or without 4 M silicon. Analysis with the GEOCHEM speciation program did not reveal differences between free activities of Al3+ in solutions with and without 4 M Si, but solutions with Si yielded lower concentrations of monomeric Al species, [Al]mono, when analysed by a modified aluminon method. Plants grown on solutions with similar [Al]mono, but differing in silicon, showed highly significant differences in growth and tissue concentrations of Al and organic acids. Silicon prevented growth inhibition at [Al]mono concentrations as high as 35 M, while plants grown without Si suffered severe growth reductions with 33 M [Al]mono. In solutions with similar [Al]mono concentrations plants with Si had lower tissue Al concentrations and higher concentrations of malic acid than plants without Si. In view of both the significant influence of Si on the response of plants to Al toxicity and the fact that some soluble Si is always present in soil solutions, the addition of low Si concentrations to nutrient solutions used for Al-tolerance screening is recommended.  相似文献   

17.
To produce stable mutants from Mankeumbyeo, a japonica rice (Oryza sativa L.) variety, we estimated the mutation efficiency of ethyl methane sulfonate (EMS) and N-methyl-N-nitrosourea (MNU) on fertilized egg cells using doubled haploids (DHs) derived from anther culture of M1 plants. M1 seed production and germination were higher in 1 mM MNU than in 94.2 mM EMS. A total of 68 DHs (35.4%) were regenerated by anther culture of M1 plants. Twenty-one DHs (30.9%) were stable mutants, 14 DHs (20.6%) were unstable mutants, and the remainder (48.5%) were normal. The frequencies of stable mutants following EMS and MNU treatments were 20.7% (three semidwarfs, one early maturation and one glabrous line) and 38.5% (three semidwarfs, two early maturation, four glabrous and one long grain line), respectively. In a field trial of seven stable mutants for yield potential, five mutants did not show a significant difference in yield as compared with the original variety. Among these five, three glabrous mutants (MK-MAC 1, MK-MAC 4 and MK-MAC 26) with a smooth leaf and hull may be considered to be improved mutant lines because of the health benefits (reduced skin damage and generation of less dust compared to the original variety) to farmers handling the plant materials. MK-MAC 26, a glabrous mutant, had also less shattering resistance than that of the original variety. These stable mutants could be used as new breeding materials.Communicated by P.P. Kumar  相似文献   

18.
The host plant Helianthemum sessiliflorum was inoculated with the mycorrhizal desert truffle Terfezia boudieri Chatin, and the subsequent effects of the ectomycorrhizal relationship on host physiology were determined. Diurnal measurements revealed that mycorrhizal (M) plants had higher rates of photosynthesis (35%), transpiration (18%), and night respiration (49%) than non-mycorrhizal (NM) plants. Consequently, M plants exhibited higher biomass accumulation, higher shoot-to-root ratios, and improved water use efficiency compared to NM plants. Total chlorophyll content was higher in M plants, and the ratio between chlorophyll a to chlorophyll b was altered in M plants. The increase in chlorophyll b content was significantly higher than the increase in chlorophyll a content (2.58- and 1.52-fold, respectively) compared to control. Calculation of the photosynthetic activation energy indicated lower energy requirements for CO2 assimilation in M plants than in NM plants (48.62 and 61.56 kJ mol−1, respectively). Continuous measurements of CO2 exchange and transpiration in M plants versus NM plants provided a complete picture of the daily physiological differences brought on by the ectomycorrhizal relationships. The enhanced competence of M plants to withstand the harsh environmental conditions of the desert is discussed in view of the mycorrhizal-derived alterations in host physiology.  相似文献   

19.
该研究以烟草品系NC89的无菌苗叶片为受体材料,采用前期构建的能同步抑制种子中FAD2(Δ12-油酸去饱和酶基因)与FatB(酰基转移酶基因)表达的RNAi载体,通过农杆菌介导转化获得了转基因烟草植株,分析转基因植株种子中的脂肪酸组分。结果显示:与对照相比,转基因植株种子中FAD2和FatB基因的表达水平分别降低了23%和11%;转基因植株种子的脂肪酸组分中,饱和脂肪酸棕榈酸和硬脂酸平均含量分别为8.02%和4.45%,多不饱和脂肪酸亚油酸平均含量为76.82%,较对照分别降低了2.91%、9.92%和3.47%;而转基因植株种子中单不饱和脂肪酸油酸含量高达7.48%,比对照提高46.38%。研究表明,同步抑制FAD2和FatB基因的表达能够显著提高烟草种子中油酸组分的含量,为进一步改良油料作物品质奠定了基础。  相似文献   

20.
Increasing oil content and improving the fatty acid composition in the seed oil are important breeding goals for rapeseed (Brassica napus L.). The objective of the study was to investigate a possible relationship between fatty acid composition and oil content in an oilseed rape doubled haploid (DH) population. The DH population was derived from a cross between the German cultivar Sollux and the Chinese cultivar Gaoyou, both having a high erucic acid and a very high oil content. In total, 282 DH lines were evaluated in replicated field experiments in four environments, two each in Germany and in China. Fatty acid composition of the seed oil was analyzed by gas liquid chromatography and oil content was determined by NIRS. Quantitative trait loci (QTL) for fatty acid contents were mapped and their additive main effects were determined by a mixed model approach using the program QTLMapper. For all fatty acids large and highly significant genetic variations among the genotypes were observed. High heritabilities were determined for oil content and for all fatty acids (h 2 = 0.82 to 0.94), except for stearic acid content (h 2= 0.38). Significant correlations were found between the contents of all individual fatty acids and oil content. Closest genetic correlations were found between oil content and the sum of polyunsaturated fatty acids (18:2 + 18:3; r G = −0.46), the sum of monounsaturated fatty acids (18:1 + 20:1 + 22:1; r G = 0.46) and palmitic acid (16:0; r G = −0.34), respectively. Between one and eight QTL for the contents of the different fatty acids were detected. Together, their additive main effects explained between 28% and 65% of the genetic variance for the individual fatty acids. Ten QTL for fatty acid contents mapped within a distance of 0 to 10 cM to QTL for oil content, which were previously identified in this DH population. QTL mapped within this distance to each other are likely to be identical. The results indicate a close interrelationship between fatty acid composition and oil content, which should be considered when breeding for increased oil content or improved oil composition in rapeseed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号