首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unusual two-domain arginine kinases (AKs) arose independently at least two times during molecular evolution of phosphagen kinases: AKs from the primitive sea anemone Anthopleura japonicus and from the clam Pseudocardium sachalinensis. To elucidate its unusual evolution, the structures of Anthopleura and Pseudocardium AK genes have been determined. The Anthopleura gene consisted of 4 exons and 3 introns: two domains are linked by a bridge intron, and each domain contains one intron in different positions. On the other hand, the Pseudocardium gene consisted of 10 exons and 9 introns: two domains are also linked by a bridge intron, and domains 1 and 2 contains 3 and 5 introns, respectively, of which 3 introns are located in exactly same positions. Since the two domains of Pseudocardium AK are estimated to have diverged about 290 million years ago, the 3 introns have been conserved at least for this long. Comparison of intron positions in Anthopleura, Pseudocardium and C. elegans AK genes indicates that there is no intron conserved through the three AK lineages, in sharp contrast to relatively conservative intron positions in creatine kinase (CK) gene family.  相似文献   

2.
The fragments of MADS-box genes belonging to the agamous and agamous-like structural classes were isolated by direct amplification of genomic DNA from annual rye (Secale cereale L.) and perennial rye (Secale montanum Guss.). The characterized fragments (deposited in the Genbank as the accession nos. AF332885–AF332887 and AF346894) comprise the complete sequences of exons 1 to 5 and lack corresponding introns. Their nearest homologs are the maize genes zag1 and zag5 (the Genbank accession nos. L18924 and L46398). One more agamous-like fragment isolated from annual rye (AF362364) is similar to theTaMADS12 wheat gene (AB007505). The fragment comprises exons 3–5 and contains a 105-bp insert between the exons 3 and 4; this insert does not resemble any MADS-box introns presently known. We assume that all these fragments of MADS-box genes are retropseudogenes.  相似文献   

3.
Most of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes characterized in plants and algae to date have one intron very close to the 5 end of the gene. To study the functional relevance of some of these introns for gene expression we have analysed the influence of three 5 introns on transient gene expression of the anaerobically inducible maizeGapC4 promoter in maize cells. Under aerobic conditions, reporter gene expression is increased in the presence of the first introns of theGapC4 andGapC1 genes, and the first intron of the nuclear encoded chloroplast-specificGapA1 gene. In contrast, theGapC4 intron increases anaerobic gene expression above the level obtained for the intronless construct, while anaerobic expression of constructs harboring theGapA1 andGapC1 introns was similar to the anaerobic expression level of the intronless construct. Splicing analysis revealed that theGapC4 intron is processed more efficiently under anaerobic conditions, while no change in splicing efficiency is observed for theGapC1 and theGapA1 introns when subjected to anaerobic conditions. These results suggest that an increase in splicing efficiency contributes to the anaerobic induction of the maizeGapC4 gene.  相似文献   

4.
G L McKnight  P J O'Hara  M L Parker 《Cell》1986,46(1):143-147
A functional cDNA from Aspergillus nidulans encoding triosephosphate isomerase (TPI) was isolated by its ability to complement a tpi1 mutation in Saccharomyces cerevisiae. This cDNA was used to obtain the corresponding gene, tpiA. Alignment of the cDNA and genomic DNA nucleotide sequences indicated that tpiA contains five introns. The intron positions in the tpiA gene were compared with those in the TPI genes of human, chicken, and maize. One intron is present at an identical position in all four organisms, two other introns are located in similar positions in A. nidulans and maize, and the remaining two introns are unique to A. nidulans. These Aspergillus-specific introns are located in regions of the protein that were predicted to be interrupted by introns based on analysis of a Go plot of chicken TPI. These comparisons are discussed in relation to the evolution of introns within TPI genes.  相似文献   

5.
6.
In vivo and in vitro gene transfer experiments have suggested that the elements mediating intron recognition differ in mammalian, yeast and plant nuclei. Differences in the sequence dependencies, which also exist between dicotyledonous and monocotyledonous nuclei, have prevented some monocot introns from being spliced in dicot nuclei. To locate elements which modulate efficient recognition of introns in dicot nuclei, the maize Adh1 gene has been expressed in full-length and single intron constructs in Nicotiana benthamiana nuclei using an autonomously replicating plant expression vector. Quantitative PCR-Southern analyses indicate that the inefficient splicing of the maize Adh1 intron 1 (57% AU) in these dicot nuclei can be dramatically enhanced by increasing the degree of U1 snRNA complementarity at the 5′ splice site. This indicates that the 5′ splice site plays a significant role in defining the splicing efficiency of an intron in dicot nuclei and that, most importantly, the remainder of this monocot intron contains no elements which inhibit its accurate recognition in dicot nuclei. Deletions in intron 3 (66% AU) which effectively move the 3′ boundary between AU-rich intron and GC-rich exon sequences strongly activate a cryptic upstream splice site; those which do not reposition this boundary activate a downstream cryptic splice site. This suggests that 3′ splice site selection in dicot nuclei is extremely flexible and not dependent on strict sequence requirements but rather on the transition points between introns and exons. Our results are consistent with a model in which potential splice sites are selected if they are located upstream (5′ splice site) or downstream (3′ splice site) of AU transition points and not if they are embedded within AU-rich sequences.  相似文献   

7.
8.
In the unicellular green alga, Chlamydomonas reinhardtii, cytochrome oxidase subunit 2 (cox2) and 3 (cox3) genes are missing from the mitochondrial genome. We isolated and sequenced a BAC clone that carries the whole cox3 gene and its corresponding cDNA. Almost the entire cox2 gene and its cDNA were also determined. Comparison of the genomic and the corresponding cDNA sequences revealed that the cox3 gene contains as many as nine spliceosomal introns and that cox2 bears six introns. Putative mitochondria targeting signals were predicted at each N terminal of the cox genes. These spliceosomal introns were typical GT–AG-type introns, which are very common not only in Chlamydomonas nuclear genes but also in diverse eukaryotic taxa. We found no particular distinguishing features in the cox introns. Comparative analysis of these genes with the various mitochondrial genes showed that 8 of the 15 introns were interrupting the conserved mature protein coding segments, while the other 7 introns were located in the N-terminal target peptide regions. Phylogenetic analysis of the evolutionary position of C. reinhardtii in Chlorophyta was carried out and the existence of the cox2 and cox3 genes in the mitochondrial genome was superimposed in the tree. This analysis clearly shows that these cox genes were relocated during the evolution of Chlorophyceae. It is apparent that long before the estimated period of relocation of these mitochondrial genes, the cytosol had lost the splicing ability for group II introns. Therefore, at least eight introns located in the mature protein coding region cannot be the direct descendant of group II introns. Here, we conclude that the presence of these introns is due to the invasion of spliceosomal introns, which occurred during the evolution of Chlorophyceae. This finding provides concrete evidence supporting the ``intron-late' model, which rests largely on the mobility of spliceosomal introns. Received: 22 August 2000 / Accepted: 28 February 2001  相似文献   

9.
10.
The complete sequence of the chloroplast genome of cassava (Manihot esculenta, Euphorbiaceae) has been determined. The genome is 161,453 bp in length and includes a pair of inverted repeats (IR) of 26,954 bp. The genome includes 128 genes; 96 are single copy and 16 are duplicated in the IR. There are four rRNA genes and 30 distinct tRNAs, seven of which are duplicated in the IR. The infA gene is absent; expansion of IRb has duplicated 62 amino acids at the 3′ end of rps19 and a number of coding regions have large insertions or deletions, including insertions within the 23S rRNA gene. There are 17 intron-containing genes in cassava, 15 of which have a single intron while two (clpP, ycf3) have two introns. The usually conserved atpF group II intron is absent and this is the first report of its loss from land plant chloroplast genomes. The phylogenetic distribution of the atpF intron loss was determined by a PCR survey of 251 taxa representing 34 families of Malpighiales and 16 taxa from closely related rosids. The atpF intron is not only missing in cassava but also from closely related Euphorbiaceae and other Malpighiales, suggesting that there have been at least seven independent losses. In cassava and all other sequenced Malphigiales, atpF gene sequences showed a strong association between C-to-T substitutions at nucleotide position 92 and the loss of the intron, suggesting that recombination between an edited mRNA and the atpF gene may be a possible mechanism for the intron loss.  相似文献   

11.
12.
We have previously reported the isolation and characterization of tomato nuclear genes encoding two types of chlorophyll a/b-binding (CAB) polypeptides localized in photosystem (PS) I and two types of CAB polypeptides localized in PSII. Sequence comparisons shows that all these genes are related to each other and thus belong to a single gene family. Here we report the isolation and characterization of an additional member of the tomato CAB gene family, the single tomato nuclear gene, designated Cab-8, which encodes a third type of CAB polypeptide localized in PSI. The protein encoded by Cab-8 is 65% and 60% divergent from the PSI Type I and Type II CAB polypeptides, respectively. The latter two are 65% divergent from each other. Only some short regions of the polypeptides are strongly conserved. The Cab-8 locus maps to chromosome 10, 9 map units from Cab-7, the gene encoding the Type II PSI CAB polypeptide. The Cab-8 gene contains two introns; the first intron matches in position the single intron in the Type II PSII CAB genes and the second intron matches in position the second intron in the Type II PSI CAB gene. Like other CAB genes, Cab-8 is light-regulated and is highly expressed in the leaf and to a lesser extent in other green organs.  相似文献   

13.
14.
The sequences of the entire blue opsin gene in the squirrel monkey (Saimiri boliviensis) and the five introns of the human blue opsin gene were obtained. Intron 3 of these genes contains an Alu sequence and intron 4 contains a partial mer13 sequence. A comparison of the squirrel monkey opsin sequence with published mammalian opsin sequences shows that features believed to be functionally critical are all conserved. However, the blue opsin has evolved twice as fast as rhodopsin and is only as conservative as the β globin, which has evolved at the average rate of mammalian proteins. Interestingly, the interhelical loops are, on average, actually more conservative than the transmembrane α helical regions. The introns of the blue opsin gene have evolved at the average rate of introns in primate genes. Received: 5 August 1996 / Accepted: 2 October 1996  相似文献   

15.
M. Purugganan  S. Wessler 《Genetica》1992,86(1-3):295-303
Recent studies have demonstrated that transposable elements in maize and Drosophila are spliced from pre-mRNA. These transposable element introns represent the first examples of recent addition of introns into nuclear genes. The eight reported examples of transposable element splicing include members of the maize Ac/Ds and Spm/dSpm and the Drosophila P and 412 element families. The details of the splicing of these transposable elements and their relevance to models of intron origin are discussed.  相似文献   

16.
17.
18.
In this study, all available cytochrome b (Cyt b) genes from the GOBASE database were compiled and the evolutionary dynamics of the Cyt b gene introns was assessed. Cyt b gene introns were frequently present in the fungal kingdom and some lower plants, but generally absent or rare in Chromista, Protozoa, and Animalia. Fungal Cyt b introns were found at 35 positions in Cyt b genes and the number of introns varied at individual positions from a single representative to 32 different introns at position 131, showing a wide and patchy distribution. Many homologous introns were present at the same position in distantly related species but absent in closely related species, suggesting that introns of the Cyt b genes were frequently lost. On the other hand, highly similar intron sequences were observed in some distantly related species rather than in closely related species, suggesting that these introns were gained independently, likely through lateral transfers. The intron loss-and-gain events could be mediated by transpositions that might have occurred between nuclear and mitochondria. Southern hybridization analysis confirmed that some introns contained repetitive sequences and might be transposable elements. An intron gain in Botryotinia fuckeliana prevented the development of QoI fungicide resistance, suggesting that intron loss-and-gain events were not necessarily beneficial to their host organisms.  相似文献   

19.
When the green unicellular alga Chlamydomonas eugametos is grown under light/dark regimes, nuclear genes are periodically activated in response to the changes in light conditions. These genetic responses are dependent upon the activation of genes associated with photosynthesis (LI616 and LI637), nonphotosynthetic photoreceptors (LI410 and LI818) and the biological clock (LI818). We report here that the LI410 and LI637 genes are part of a small gene family encoding hemoglobins (Hbs) related to those from two unicellular eukaryotes, the ciliated protozoa Paramecium caudatum and Tetrahymena pyriformis, and from the cyanobacterium Nostoc commune. Investigations of the intracellular localization of C. eugametos Hbs by means of immunogold electron microscopy indicate that these proteins are predominantly located in the chloroplast, particularly in the pyrenoid and the thylakoid region. To our knowledge, this constitutes the first evidence for the presence of Hbs in chloroplasts. Alignment of the LI637 cDNA nucleotide sequence with its corresponding genomic sequence indicates that the L1637 gene contains three introns, the positions of which are compared with those in the Hb genes of plants, animals and the ciliate P. caudatum. Although the LI637 gene possesses a three-intron/four-exon pattern similar to that of plant leghemoglobin genes, introns are inserted at different positions. Similarly the position of the single intron in the P. caudatum gene differs from the intron sites in the LI637 gene. The latter observations argue against the current view that all eukaryotic Hbs have evolved from a common ancestor having a gene structure identical to that of plant or animal Hbs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号