首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T H Massey  D C Fessler 《Biochemistry》1976,15(22):4906-4912
The binding properties of angiotensin I for the active site of rabbit lung converting enzyme (CE) have been investigated. A series of angiotensin I like substrates, all containing the C-terminal tripeptide, (NO2)Phe-His-Leu, were synthesized by increasing the length of the peptide at the N-terminal end. A total of eight peptides were studied, the largest being [Asn1, (NO2)Phe8]angiotensin I. As determined by thin-layer chromatography, all substrates were hydrolyzed only at the (NO2)Phe-His bond by purified converting enzyme, with the release of the dipeptide, His-Leu. By using an absorbance increase upon hydrolysis, the Michaelis constants and velocity maxima were determined and used to estimate those amino acids in the angiotensin I molecule that contribute significantly to binding to converting enzyme. It was hypothesized that, upon addition or substitution of one or more amino acids to the N-terminal end, a proportional decrease in both KM and Vm is needed in order to conclude that the substrate actually increases its affinity for the enzyme. A test of the proportionality for the variation of KM and Vm was found to be positive for all the substrates, except the N-terminal carbobenzoxy-blocked tripeptide, Z(NO2)Phe-His-Leu. Substitutions near the bond that is hydrolyzed (e.g., proline for the carbobenzoxy group) appear to alter the catalytic properties of CE, while additions far removed from the site of hydrolysis (e.g., the N-terminal tripeptide Asn-Arg-Val) may enhance binding affinity.  相似文献   

2.
The affinity of ristocetin B for analogues of the C-terminal tripeptide sequence of bacterial cell wall mucopeptide precursors resembles that of vancomycin. Complex-formation requires a d-configuration in the two amino acid residues of the C-terminal dipeptide, an l-configuration is preferred in the preceding amino acid residue and positive charges on the peptide molecule decrease its affinity. The specificity of ristocetin B, however, differs from that of vancomycin in the requirements for the size of the side chains on the C-terminal dipeptide. These differences may explain the observed differences in antibiotic behaviour of vancomycin and ristocetin with particular micro-organisms. The optical rotatory dispersion and u.v.-absorption characteristics of the ristocetins are very different from those of vancomycin but nearly identical with those of ristomycin A. Aglycones prepared from ristomycin A were antibiotically active and also combined with a specific peptide.  相似文献   

3.
Ferredoxin (Fd), a small protein from Clostridium pasteurianum, has been selected for immunologic studies because of its limited number (two) of antigenic determinants. Functionally (as determined by antibody binding), monodeterminant fragments of Fd can be generated enzymatically, leaving molecules only a few amino acids smaller than the native protein, with unaltered solid phase binding properties. These fragments were used to assess the immune response to each of the two determinants. Clear differences in immunologic properties can be assigned to sequences within Fd: the amino terminal tripeptide is responsible for inducing a proliferative response and limited antibody production, whereas the carboxy terminal dipeptide accounts for most of the antibody activity, yet little, if any, T-proliferative activity. Studies with the enzyme-generated fragments of Fd have unmasked a sequence proximal to the amino terminal that represents a second determinant for T cell proliferation but does not have any demonstrable antibody-inducing activity. This third determinant is shown to induce responsiveness to Fd in nonresponder animals after the removal of the amino terminal tripeptide. The results indicate that nonresponsiveness to this molecule in H-2d mice is not a direct effect of suppression.  相似文献   

4.
The pharmacophore of the human C5a anaphylatoxin.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have determined which amino acids contribute to the pharmacophore of human C5a, a potent inflammatory mediator. A systematic mutational analysis of this 74-amino acid protein was performed and the effects on the potency of receptor binding and of C5a-induced intracellular calcium ion mobilization were measured. This analysis included the construction of hybrids between C5a and the homologous but unreactive C3a protein and site-directed mutagenesis. Ten noncontiguous amino acids from the structurally well-defined 4-helix core domain (amino acids 1-63) and the C-terminal arginine-containing tripeptide were found to contribute to the pharmacophore of human C5a. The 10 mostly charged amino acids from the core domain generally made small incremental contributions toward binding affinity, some of which were independent. Substitutions of the C-terminal amino acid Arg 74 produced the largest single effect. We also found the connection between these 2 important regions to be unconstrained.  相似文献   

5.
We have isolated and characterized the Saccharomyces cerevisiae PTR3 gene by functional complementation of a mutant deficient for amino acid-inducible peptide transport. PTR3 is predicted to encode a protein of 678 amino acids that exhibits no similarity to any other protein in the database. Deletion of the PTR3 open reading frame pleiotropically reduced the sensitivity to toxic peptides and amino acid analogues. Initial rates of radiolabelled dipeptide uptake demonstrated that elimination of PTR3 resulted in the loss of amino acid-induced levels of peptide transport. PTR3 was required for amino acid-induced expression of PTR2 , the gene encoding the dipeptide/tripeptide transport protein, but was not necessary for nitrogen catabolite repression of peptide import or PTR2 expression. It was determined that PTR3 also modulates expression of BAP2 , the gene encoding the branched-amino acid permease. Furthermore, we present genetic evidence that suggests that PTR3 functions within a novel regulatory pathway that facilitates amino acid induction of the PTR system.  相似文献   

6.
Abstract Peptidase D of Escherichia coli was overproduced from a multicopy plasmid and purified to electrophoretic homogeneity. The pure enzyme was stable at 4°C or −20°C and had a pH optimum at pH 9, and a p I of 4.7; the temperature optimum was at 37°C. As the enzyme was activated by Co2+ and Zn2+, and deactivated by metal chelators, it appears to be a metallopeptidase. By activity staining of native gels, 11 dipeptides which are preferentially cleaved by peptidase D were identified. Peptidase D activity required dipeptide substrates with an unblocked amino terminus and the amino group in the α or β position. Non-protein amino acids and proline were not accepted in the C-terminal position, whereas some dipeptide amides and formyl amino acids were hydrolyzed. K m values of 2 to 5 mM indicate a relatively poor interaction of the enzyme with its substrates.  相似文献   

7.
Synthesis of ophthalmic acid in liver and kidney in vivo.   总被引:4,自引:0,他引:4       下载免费PDF全文
The synthesis of ophthalmic acid, an analogue of glutathione, was studied in vivo in mouse liver and kidney after administration of either L-alpha-aminobutyrate or L-gamma-glutamyl-L-alpha-aminobutyrate as precursor. L-alpha-aminobutyrate accumulated to a much greater extent, and induced a much greater synthesis of ophthalmic acid in the liver than in the kidney. In contrast, L-gamma-glutamyl-L-alpha-aminobutyrate initiated a large and more rapid synthesis of ophthalmic acid in the kidney than in the liver. Experiments with L-gamma-[G(-14)C]glutamyl-L-alpha-aminobutyrate showed that, although part of the dipeptide is degraded to its constituent amino acids, a significant proportion is directly incorporated into kidney ophthalmic acid. In contrast L-gamma-glutamyl-L-alpha-aminobutyrate serves poorly as a direct precursor of liver ophthalmic acid. The present results show that kidney gamma-glutamyl tripeptide synthesis can proceed directly from an exogenous gamma-glutamyl dipeptide precursor.  相似文献   

8.
S-Ethyl 2-azidohexanethioate (N3-Hex-SEt), an unnatural amino acid analog of leucine, is coupled with L-cysteine ethyl ester (NH2-Cys-OEt) to obtain N3-Hex-Cys-OEt by native chemical ligation. Coupling of this dipeptide with N-t-butoxycarbonyl-2-diphenylphosphinoethanethioglycinate produces the tripeptide, t-Boc-Gly-Hex-Cys-OEt, in high yield. These reactions suggest an approach for the incorporation of unnatural amino acids into proteins by successive native chemical ligation and Staudinger ligation.  相似文献   

9.
Sequential processing reactions in the formation of hormone amides   总被引:1,自引:0,他引:1  
The substrate specificity of an enzyme with amidating activity, present in porcine pituitary, was investigated by examining its ability to convert the synthetic peptides D-Tyr-Val-Gly and D-Tyr-Val-Gly-Lys-Arg to the dipeptide amide D-Tyr-Val-CONH2. The purified enzyme catalysed the amidation reaction with the tripeptide but did not accept the pentapeptide as a substrate. With the mixture of enzymes present in a membrane fraction from porcine pituitary or the enzymes in a secretory granule fraction, both the tripeptide and pentapeptide substrates gave rise to D-Tyr-Val amide; the formation of dipeptide amide from the pentapeptide, however, involved a latency period after which amidation occurred at a similar rate with the two substrates. Evidence was obtained that arginine and lysine were released from the C terminus of the pentapeptide before amidation took place since the rate of formation of dipeptide amide was reduced at pH values that were compatible with amidation but unfavourable to the action of carboxypeptidase H. In addition formation of the dipeptide amide from the pentapeptide was blocked by guanidinoethylmercaptosuccinic acid and glycylarginine, which are inhibitors of carboxypeptidase enzymes. The experiments demonstrate that removal of basic residues from the C terminus of a peptide and amidation at C-terminal glycine are reactions that take place consecutively. These prohormone-processing reactions, which are intrinsic to the formation of hormone amides, did not synergise.  相似文献   

10.
Human atrial natriuretic peptide (Ser 99-Tyr 126) was rapidly degraded by both choroid plexus and hypothalamic membranes with a complex pattern of cleavage. The use of protease inhibitors allowed a preliminary characterization of the enzymes involved in the hydrolysis of the Ser-Phe and Phe-Arg bonds of iodine-labelled atrial natriuretic peptide.The C-terminal tripeptide was generated by three different enzymatic activities acting on the Ser-Phe bond: endopeptidase 24.11, a phosphoramidon-insensitive metallopeptidase and a thiol protease. Peptides like substance P, neurotensin, bradykinin inhibited the cleavage of the Ser-Phe bond of atrial natriuretic peptide. The C-terminal tripeptide was further degraded by aminopeptidases. Cleavage of the C-terminal dipeptide was inhibited by aprotinin, suggesting the contribution of brain kallikrein in the formation of this metabolite.These results show that many different proteases were involved in the hydrolysis of the C-terminal sequence of atrial natriuretic peptide, at least in vitro and underline the complexity of neuropeptide catabolism by brain preparations.  相似文献   

11.
E J Smid  R Plapp    W N Konings 《Journal of bacteriology》1989,171(11):6135-6140
The chlorated dipeptide L-alanyl-beta-chloro-L-alanine (diACA) is very toxic for Lactococcus lactis. Spontaneous mutants resistant to the dipeptide were isolated from plates. The presence and activities of cell wall-associated proteinase, different peptidases in cell extracts, amino acid transport systems, and di- and oligopeptide transport systems were examined and compared in a diACA-resistant mutant and the wild type. Only the rates of di- and tripeptide transport were found to be significantly reduced in the diACA-resistant mutant of L. lactis ML3. Since all other characteristics of this mutant were comparable to those of the wild type, the diACA-resistant mutant is most likely deficient in di- and tripeptide transport. Uptake of di- and tripeptides by L. lactis ML3 was found to be mainly mediated by one peptide transport system. The peptide transport-deficient mutant was found to be unable to grow on a chemically defined medium supplemented with casein as the sole nitrogen source, whereas growth could be restored by the addition of amino acids. These results indicate that peptide transport in L. lactis ML3 is an essential component in the process of casein utilization during growth in milk.  相似文献   

12.
Different types of dipeptide building units containing N- or C-terminal arginine were prepared for synthesis of the backbone cyclic analogues of the peptide hormone bradykinin (BK: Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg). For cyclization in the N-terminal sequence N-carboxyalkyl and N-aminoalkyl functionalized dipeptide building units were synthesized. In order to avoid lactam formation during the condensation of the N-terminal arginine to the N-alkylated amino acids at position 2, the guanidino function has to be deprotected. The best results were obtained by coupling Z-Arg(Z)2-OH with TFFH/collidine in DCM. Another dipeptide building unit with an acylated reduced peptide bond containing C-terminal arginine was prepared to synthesize BK-analogues with backbone cyclization in the C-terminus. To achieve complete condensation to the resin and to avoid side reactions during activation of the arginine residue, this dipeptide unit was formed on a hydroxycrotonic acid linker. HYCRAM technology was applied using the Boc-Arg(Alloc)2-OH derivative and the Fmoc group to protect the aminoalkyl function. The reduced peptide bond was prepared by reductive alkylation of the arginine derivative with the Boc-protected amino aldehyde, derived from Boc-Phe-OH. The best results for condensation of the branching chain to the reduced peptide bond were obtained using mixed anhydrides. Both types of dipeptide building units can be used in solid-phase synthesis in the same manner as amino acid derivatives.  相似文献   

13.
Racemization in the synthesis of tripeptide intermediates and their polymers was investigated, using L -amino acid oxidase. Stepwise investigation of peptide intermediates showed no racemization during peptide coupling steps or deprotection of benzyl esters by hydrogenolysis. Saponification of one of the methyl esters produced some racemization. Preparation of active esters from N-protected tripeptide acids containing optically active C-terminal amino acid, with one exception, produced racemization. The fractionated polymers were found to contain less racemized amino acids than the crude products or starting monomeric tripeptides, indicating that the racemized sequences gave rise to lower molecular-weight oligomers. The sequences investigated were -Pro-Pro-Ala-, -Ala-Pro-Pro-, -Val-Pro-Pro-, -Pro-Pro-Leu-, -Pro-Gly-Leu-, -Pro-Gly-Phe-, -Pro-Gly-Val-, -Gly-Val-Pro-, -Phe-Pro-Gly-, -Leu-Pro-Gly-, and Ile-Pro-Gly-.  相似文献   

14.
The acyclic C-terminal tripeptide of oxytocin, H-Pro-Leu-Gly-NH-2, is not degraded upon incubation with human (male,female or pregnant female) plasma or serum for 1hr at 37 degrees. However, the sera of other species tested, including rat, chicken and carp, degrade this tripeptide 100%, 4% and 30%, respectively, in 1 hr, as determined by quantitative amino acid analysis of released products. Among the species studied there seems to exist a correlation between the anatomic development of the pars intermedia and the ability of the serum to hydrolyze H-Pro-Leu-Gly-NH-2, which has been proposed to be a MSH-release-inhibiting factor. The only identified degradation products are Pro, Leu and H-Gly-NH-2 with no detectable levels of H-Leu-Gly-NH2. The dipeptides H-Leu-Gly-NH-2 and H-Pro-Leu-OH are each cleaved at similiar rates in either human or rat serum, although the rate of hydrolysis of both peptides is lower in human than in rat. Thus, it does not appear that the dipeptide, H-EU-Gly-NH-2, can accumulate as one of the breakdown products of the tripeptide. The arylamidase present in rat serum has different characteristics from the enzyme in rat brain which can degrade H-Pro-Leu-Gly-NH-2.  相似文献   

15.
 The peroxisome targeting signal (PTS) required for import of the rat acyl-CoA oxidase (AOX; EC 1.3.3.6) and the Candida tropicalis multifunctional protein (MFP) in plant peroxisomes was assessed in transgenic Arabidopsis thaliana (L.) Heynh. The native rat AOX accumulated in peroxisomes in A. thaliana cotyledons and targeting was dependent on the presence of the C-terminal tripeptide S-K-L. In contrast, the native C. tropicalis MFP, containing the consensus PTS sequence A-K-I was not targeted to plant peroxisomes. Modification of the carboxy terminus to the S-K-L tripeptide also failed to deliver the MFP to peroxisomes while addition of the last 34 amino acids of the Brassica napus isocitrate lyase, containing the terminal tripeptide S-R-M, enabled import of the fusion protein into peroxisomes. These results underline the influence of the amino acids adjacent to the terminal tripeptide of the C. tropicalis MFP on peroxisomal targeting, even in the context of a protein having a consensus PTS sequence S-K-L. Received: 19 July 1999 / Accepted: 19 February 2000  相似文献   

16.
Goat immunoglobulin G (IgG) was isolated and characterized. The molecular weights of the IgG and its heavy chains and light chains were found to be 144000, 53600 and 23000 respectively. The light chain corresponds to human L type as was shown by the absence of C-terminal S-carboxymethylcysteine and its high content of N-terminal pyrrolid-2-one-5-carboxylic acid (PCA). The major C-terminal residue of the light chain was serine and the major N-terminal dipeptide was PCA-Ala (0.6mole/mole). The major C-terminal residue of the heavy chain was glycine and the N-terminal sequence of the heavy chain is PCA-Val-Gln. This tripeptide was obtained in a 70% yield.  相似文献   

17.
K S Hui  M P Hui  N Ling  A Lajtha 《Life sciences》1985,36(24):2309-2315
Proctolin is a potent selective inhibitor of aminoenkephalinase. The specificity of its inhibition of various aminopeptidases is similar to that of puromycin; it inhibits aminoenkephalinase, but not leucine aminopeptidase or aminopeptidase M. Enkephalin breakdown by synaptic plasma membrane, but not by brain slices, is sensitive to proctolin. The inhibition by proctolin is partially caused by its resistance to enzymatic breakdown. The inhibition is of mixed type and is concentration dependent, and the two amino acids at the N-terminal are important for its action. The minimal structure for inhibition is a dipeptide with a basic amino acid at the N-terminal and a basic or an aromatic amino acid at the C-terminal.  相似文献   

18.
Peptide utilization by group N streptococci.   总被引:3,自引:0,他引:3  
The rate of glycylleucine uptake by Group N streptococci varied widely. One strain of Streptococcus cremoris did not transport the dipeptide or utilize tripeptides. In peptide-utilizing strains, amino acid, dipeptide and tripeptide transport were distinct, although dipeptides inhibited tripeptide utilization. Specificity determinants for peptide transport and utilization were similar to those reported in Gram-negative bacteria. Peptide utilization in S. lactis was not completely dependent on the transport of intact peptides.  相似文献   

19.
The gene encoding the di- and tripeptide transport protein (DtpT) of Lactobacillus helveticus (DtpTLH) was cloned with the aid of the inverse PCR technique and used to complement the dipeptide transport-deficient and proline-auxotrophic Escherichia coli E1772. Functional expression of the peptide transporter was shown by the uptake of prolyl-[14C] alanine in whole cells and membrane vesicles. Peptide transport via DtpT in membrane vesicles is driven by the proton motive force. The system has specificity for di- and tripeptides but not for amino acids or tetrapeptides. The dtpTLH gene consists of 1,491 bp, which translates into a 497-amino-acid polypeptide. DtpTLH shows 34% identity to the di- and tripeptide transport protein of Lactococcus lactis and is also homologous to various peptide transporters of eukaryotic origin, but the similarity between these proteins is confined mainly to the N-terminal halves.  相似文献   

20.
The ability of the endopeptidase α-chymotrypsin (EC 3.4.21.1) to catalyse the reaction of various Nα- unprotected di- and tripeptide ester derivatives with H-Leu-NH2, and with a series of C-terminal free di- and tripeptides at −15° C in frozen aqueous solution was investigated. The enzyme is able to synthesize N- and C-terminal unprotected penta- and hexapeptides in up to 92% yield, depending on the amino component used, in a single-step segment-condensation reaction. Freezing the reaction mixture resulted in significantly increased peptide yields compared with the reaction at room temperature. The enzyme shows a modified nucleophilic specificity in frozen solution compared with room temperature. Nucleophilic amino components with positively charged amino acids in P2 -position are accepted. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号