首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biosynthetic pathways of brassinolide from campesterol was demonstrated by studies using cultured Catharanthus roseus cells. Brassinolide is biosynthesized through two pathways, early C6-oxidation pathway and late C6-oxidation pathway, branching off at the conversion of campestanol. Recent characterization of brassinosteroid-deficient mutants of Arabidopsis, pea and tomato confirmed that the pathways operate in wide variety of plant species. Biochemical and molecular genetic studies of the mutants are providing important knowledge on genes and enzymes involved in brassinosteroid biosynthesis. The established biosynthetic pathways of brassinosteroids and the regulation of biosynthesis including up-to-date findings are introduced in this review.  相似文献   

2.
Biosynthetic pathways of brassinolide in Arabidopsis   总被引:5,自引:0,他引:5       下载免费PDF全文
Our previous studies on the endogenous brassinosteroids (BRs) in Arabidopsis have provided suggestive evidence for the operation of the early C6-oxidation and the late C6-oxidation pathways, leading to brassinolide (BL) in Arabidopsis. However, to date the in vivo operation of these pathways has not been fully confirmed in this species. This paper describes metabolic studies using deuterium-labeled BRs in wild-type and BR-insensitive mutant (bri1) seedlings to establish the intermediates of the biosynthetic pathway of BL in Arabidopsis. The first evidence for the conversion of campestanol to 6-deoxocathasterone and the conversion of 6-deoxocathasterone to 6-deoxoteasterone is provided. The later biosynthetic steps (6-deoxoteasterone --> 3-dehydro-6-deoxoteasterone --> 6-deoxotyphasterol --> 6-deoxocastasterone --> 6alpha-hydroxycastasterone --> castasterone --> BL) were demonstrated by stepwise metabolic experiments. Therefore, these studies complete the documentation of the late C6-oxidation pathway. The biosynthetic sequence involved in the early C6-oxidation pathway (teasterone --> 3-dehydroteasterone --> typhasterol --> castasterone --> BL) was also demonstrated. These results show that both the early and late C6-oxidation pathways are functional in Arabidopsis. In addition we report two new observations: the presence of a new branch in the pathway, C6 oxidation of 6-deoxotyphasterol to typhasterol, and increased metabolic flow in BR-insensitive mutants.  相似文献   

3.
Biosynthesis and metabolism of brassinosteroids   总被引:4,自引:0,他引:4  
Natural brassinosteroids so far identified from various plant species include biosynthetic congeners of brassinolide, such as cathasterone, teasterone, 3-dehydroteasterone, typhasterol and castasterone as well as another series of 6-deoxoteasterone, 3-dehydro-6-deoxoteasterone, 6-deoxotyphasterol and 6-deoxocastasterone. Using cell culture system of Catharanthus roseus , the outlines of biosynthetic pathways of brassinolide, via plant sterol of campesterol, have now been demonstrated. There are two pathways, named early C6-oxidation pathway and late C6-oxidation pathway, both of which would be operating in wide varieties of plants. Metabolic studies with various plant systems revealed multiple paths of metabolism such as hydroxylation, epimerization, side chain cleavage, reduction and conjugation with glucose and fatty acids. Recent progress of biosynthesis and metabolism of brassinosteroids is described.  相似文献   

4.
The conidia of Colletotrichum orbiculare, the causal agent of cucumber anthracnose, develop appressoria that are pigmented with melanin for host plant infection. Premature appressoria contain abundant lipid droplets (LDs), but these disappear during appressorial maturation, indicating lipolysis inside the appressorial cells. The lipolysis and melanization in appressoria require the peroxin PEX6, suggesting the importance of peroxisomal metabolism in these processes. To investigate the relationships between appressorial lipolysis and fungal metabolic pathways, C. orbiculare knockout mutants of MFE1, which encodes a peroxisomal multifunctional enzyme, were generated in this study, and the phenotype of the mfe1 mutants was investigated. In contrast to the wild-type strain, which forms melanized appressoria, the mfe1 mutants formed colorless nonmelanized appressoria with abundant LDs, similar to those of pex6 mutants. This indicates that fatty acid β-oxidation in peroxisomes is critical for the appressorial melanization and lipolysis of C. orbiculare. Soraphen A, a specific inhibitor of acetyl-CoA carboxylase, inhibited appressorial lipolysis and melanization, producing phenocopies of the mfe1 mutants. This suggests that the conversion of acetyl-CoA, derived from fatty acid β-oxidation, to malonyl-CoA is required for the activation of lipolysis in appressoria. Surprisingly, we found that genetically blocking PKS1-dependent polyketide synthesis, an initial step in melanin biosynthesis, also impaired appressorial lipolysis. In contrast, genetically or pharmacologically blocking the steps in melanin synthesis downstream from PKS1 did not abolish appressorial lipolysis. These findings indicate that melanin biosynthesis, as well as fatty acid β-oxidation, is involved in the regulation of lipolysis inside fungal infection structures.  相似文献   

5.
Next to d -glucose, the pentoses l -arabinose and d -xylose are the main monosaccharide components of plant cell wall polysaccharides and are therefore of major importance in biotechnological applications that use plant biomass as a substrate. Pentose catabolism is one of the best-studied pathways of primary metabolism of Aspergillus niger, and an initial outline of this pathway with individual enzymes covering each step of the pathway has been previously established. However, although growth on l -arabinose and/or d -xylose of most pentose catabolic pathway (PCP) single deletion mutants of A. niger has been shown to be negatively affected, it was not abolished, suggesting the involvement of additional enzymes. Detailed analysis of the single deletion mutants of the known A. niger PCP genes led to the identification of additional genes involved in the pathway. These results reveal a high level of complexity and redundancy in this pathway, emphasizing the need for a comprehensive understanding of metabolic pathways before entering metabolic engineering of such pathways for the generation of more efficient fungal cell factories.  相似文献   

6.
Brassinosteroid (BR)-6-oxidases mediate the bridge reactions that connect the late and early C-6 oxidation pathways by converting 6-deoxoBR to 6-oxoBRs. Two similar genes ofArabidopsis, CYP85A1 (At5g38970) andCYP85A2 (At3g30180), are proposed to encode BR-6-oxidases based on findings that heterologously expressed genes mediate BR-6-oxidation reactions in yeast. However, genetic evidence that both genes are critically involved in the BR-6-oxidation step inArabidopsis has been limited. Here, we show that a double mutant for the two genes displays dwarfism similar to that of typical BR biosynthesis-deficient mutants, suggesting that they are the major BR-6-oxidases inArabidopsis. Examination of endogenous BR levels and metabolism monitoring tests using this double mutant revealed a great reduction in the levels of 6-oxoBRs, e.g., TY and CS, due to a lack in the conversion reactions from 6-deoxoCS to CS, and from 6-deoxoTY to TY. Surprisingly, the double mutant accumulated a significant amount of 6-oxocampestanol, suggesting that the upstream C-6 oxidation of campestanol to 6-oxocampestanol is not catalyzed by the two BR-6-oxidases inArabidopsis, rather, by another enzyme yet to be discovered.  相似文献   

7.
This review examines the enzymes of 4-chlorobenzoate to 4-hydroxybenzoate converting pathway found in certain soil bacteria. This pathway consists of three enzymes: 4-chlorobenzoate: Coenzyme A ligase, 4-chlorobenzoyl-Coenzyme A dehalogenase and 4-hydroxybenzoyl-Coenzyme A thioesterase. Recent progress made in the cloning and expression of the pathway genes from assorted bacterial strains is described. Gene order and sequence found among these strains are compared to reveal independent enzyme recruitment strategies. Sequence alignments made between thePseudomonas sp. strain CBS3 4-chlorobenzoate pathway enzymes and structurally related proteins contained within the protein sequence data banks suggest possible origins in preexisting -oxidation pathways. The purification and characterization of the physical and kinetic properties of the pathway enzymes are described. Where possible a comparison of these properties between like enzymes from different bacterial sources are made.  相似文献   

8.
9.
Isoprenoids are produced in all organisms but are especially abundant and diverse in plants. Two separate pathways operate in plant cells to synthesize prenyl diphosphate precursors common to all isoprenoids. Cytosolic and mitochondrial precursors are produced by the mevalonic acid (MVA) pathway whereas the recently discovered methylerythritol phosphate (MEP) pathway is located in plastids. However, both pathways may participate in the synthesis of at least some isoprenoids under certain circumstances. Although genes encoding all the enzymes from both pathways have already been cloned, little is known about the regulatory mechanisms that control the supply of isoprenoid precursors. Genetic approaches are providing valuable information on the regulation of both pathways. Thus, recent data from overexpression experiments in transgenic plants show that several enzymes share control over the metabolic flux through the MEP pathway, whereas a single regulatory step has been proposed for the MVA pathway. Identification of Arabidopsis thaliana mutants that are resistant to the inhibition of the MVA and the MEP pathways is a promising approach to uncover mechanisms involved in the crosstalk between pathways. The characterization of some of these mutants impaired in light perception and signaling has recently provided genetic evidence for a role of light as a key factor to modulate the availability of isoprenoid precursors in Arabidopsis seedlings. The picture emerging from recent data supports that a complex regulatory network appears to be at work in plant cells to ensure the supply of isoprenoid precursors when needed.  相似文献   

10.
tie-dyed1 (tdy1) and sucrose export defective1 (sxd1) are recessive maize (Zea mays) mutants with nonclonal chlorotic leaf sectors that hyperaccumulate starch and soluble sugars. In addition, both mutants display similar growth-related defects such as reduced plant height and inflorescence development due to the retention of carbohydrates in leaves. As tdy1 and sxd1 are the only variegated leaf mutants known to accumulate carbohydrates in any plant, we investigated whether Tdy1 and Sxd1 function in the same pathway. Using aniline blue staining for callose and transmission electron microscopy to inspect plasmodesmatal ultrastructure, we determined that tdy1 does not have any physical blockage or alteration along the symplastic transport pathway as found in sxd1 mutants. To test whether the two genes function in the same genetic pathway, we constructed F2 families segregating both mutations. Double mutant plants showed an additive interaction for growth related phenotypes and soluble sugar accumulation, and expressed the leaf variegation pattern of both single mutants indicating that Tdy1 and Sxd1 act in separate genetic pathways. Although sxd1 mutants lack tocopherols, we determined that tdy1 mutants have wild-type tocopherol levels, indicating that Tdy1 does not function in the same biochemical pathway as Sxd1. From these and other data we conclude that Tdy1 and Sxd1 function independently to promote carbon export from leaves. Our genetic and cytological studies implicate Tdy1 functioning in veins, and a model discussing possible functions of TDY1 is presented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The distribution of the methylcitric acid cycle and the modified ^-oxidation pathway for propionate catabolism was surveyed in yeasts and filamentous fungi, mainly by comparing the activities of the key enzymes. All the six tested species of filamentous fungi belonging to five genera and 21 species of yeasts belonging to eleven genera were found to catabolize propionate through the methylcitric acid cycle, with the exception of Candida rugosa and one group of strains of C. catenulata, which catabolize propionate through the ß-oxidation pathway. From the observed diversity of propionate catabolism among closely related strains or species, it was assumed that different minor pathways evolved from universal metabolic pathways, such as the citric acid cycle and the ^-oxidation pathway for fatty acids, in later stages of an evolutionary history.  相似文献   

12.
13.
It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid ß-oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial ß-oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the ß-oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14Cα-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2Δ null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial β-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner.  相似文献   

14.
The importance of plant heterotrimeric G protein functions has recently been recognized. Rice and Arabidopsis mutants of genes coding the subunits of the G proteins have been isolated and physiological studies on these mutants have suggested that plant heterotrimeric G proteins are involved in several intra-signaling pathways driven by external signals, such as gibberellin, auxin, abscisic acid, brassinolide, ethylene, light, and elicitor. The possible functions of rice heterotrimeric G proteins in gibberellin signaling are discussed here.  相似文献   

15.
16.
Streptomyces is well known for synthesis of many biologically active secondary metabolites, such as polyketides and non-ribosomal peptides. Understanding the coupling mechanisms of primary and secondary metabolism can help develop strategies to improve secondary metabolite production in Streptomyces. In this work, Streptomyces albus ZD11, an oil-preferring industrial Streptomyces strain, was proved to have a remarkable capability to generate abundant acyl-CoA precursors for salinomycin biosynthesis with the aid of its enhanced β-oxidation pathway. It was found that the salinomycin biosynthetic gene cluster contains a predicted 3-hydroxyacyl-CoA dehydrogenase (FadB3), which is the third enzyme of β-oxidation cycle. Deletion of fadB3 significantly reduced the production of salinomycin. A variety of experimental evidences showed that FadB3 was mainly involved in the β-oxidation pathway rather than ethylmalonyl-CoA biosynthesis and played a very important role in regulating the rate of β-oxidation in S. albus ZD11. Our findings elucidate an interesting coupling mechanism by which a PKS biosynthetic gene cluster could regulate the β-oxidation pathway by carrying β-oxidation genes, enabling Streptomyces to efficiently synthesize target polyketides and economically utilize environmental nutrients.  相似文献   

17.
An understanding of the connections between metabolism and elaboration of virulence factors during host colonization by the human-pathogenic fungus Cryptococcus neoformans is important for developing antifungal therapies. Lipids are abundant in host tissues, and fungal pathogens in the phylum basidiomycota possess both peroxisomal and mitochondrial β-oxidation pathways to utilize this potential carbon source. In addition, lipids are important signaling molecules in both fungi and mammals. In this report, we demonstrate that defects in the peroxisomal and mitochondrial β-oxidation pathways influence the growth of C. neoformans on fatty acids as well as the virulence of the fungus in a mouse inhalation model of cryptococcosis. Disease attenuation may be due to the cumulative influence of altered carbon source acquisition or processing, interference with secretion, changes in cell wall integrity, and an observed defect in capsule production for the peroxisomal mutant. Altered capsule elaboration in the context of a β-oxidation defect was unexpected but is particularly important because this trait is a major virulence factor for C. neoformans. Additionally, analysis of mutants in the peroxisomal pathway revealed a growth-promoting activity for C. neoformans, and subsequent work identified oleic acid and biotin as candidates for such factors. Overall, this study reveals that β-oxidation influences virulence in C. neoformans by multiple mechanisms that likely include contributions to carbon source acquisition and virulence factor elaboration.  相似文献   

18.
The brassinosteroids (BRs) occur ubiquitously in the plant kingdom. The occurrence of BRs has been demonstrated in almost every part of higher plants, such as pollen, flower buds, fruits, seeds, vascular cambium, leaves, shoots and roots. In this study, BRs were isolated and identified in the culture of wild-type Chlorella vulgaris. Seven BRs, including teasterone, typhasterol, 6-deoxoteasterone, 6-deoxotyphasterol, 6-deoxocastasterone, castasterone and brassinolide, were identified by GC–MS. All compounds belong to the BR biosynthetic pathway. The results suggest that early and late C6 oxidation pathways are operating in C. vulgaris. This study represents the first isolation of BRs from C. vulgaris cultures.  相似文献   

19.
Plant cell wall modification is a critical component in stress responses. Endo‐1,4‐β‐glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence‐signalling network. A study of a set of Arabidopsis EG T‐DNA insertion mutants challenged with P. syringae and Botrytis cinerea revealed that the lack of other EGs interferes with infection phenotype, callose deposition, expression of signalling pathway marker genes and hormonal balance. We conclude that a lack of EGs could alter plant response to pathogens by modifying the properties of the cell wall and/or interfering with signalling pathways, contributing to generate the appropriate signalling outcomes. Analysis of microarray data demonstrates that EGs are differentially expressed upon many different plant–pathogen challenges, hormone treatments and many abiotic stresses. We found some Arabidopsis EG mutants with increased tolerance to osmotic and salt stress. Our results show that impairing EGs can alter plant–pathogen interactions and may contribute to appropriate signalling outcomes in many different biotic and abiotic plant stress responses.  相似文献   

20.
4-Hydroxyacids are products of ubiquitously occurring lipid peroxidation (C9, C6) or drugs of abuse (C4, C5). We investigated the catabolism of these compounds using a combination of metabolomics and mass isotopomer analysis. Livers were perfused with various concentrations of unlabeled and labeled saturated 4-hydroxyacids (C4 to C11) or 4-hydroxynonenal. All the compounds tested form a new class of acyl-CoA esters, 4-hydroxy-4-phosphoacyl-CoAs, characterized by liquid chromatography-tandem mass spectrometry, accurate mass spectrometry, and 31P-NMR. All 4-hydroxyacids with five or more carbons are metabolized by two new pathways. The first and major pathway, which involves 4-hydroxy-4-phosphoacyl-CoAs, leads in six steps to the isomerization of 4-hydroxyacyl-CoA to 3-hydroxyacyl-CoAs. The latter are intermediates of physiological β-oxidation. The second and minor pathway involves a sequence of β-oxidation, α-oxidation, and β-oxidation steps. In mice deficient in succinic semialdehyde dehydrogenase, high plasma concentrations of 4-hydroxybutyrate result in high concentrations of 4-hydroxy-4-phospho-butyryl-CoA in brain and liver. The high concentration of 4-hydroxy-4-phospho-butyryl-CoA may be related to the cerebral dysfunction of subjects ingesting 4-hydroxybutyrate and to the mental retardation of patients with 4-hydroxybutyric aciduria. Our data illustrate the potential of the combination of metabolomics and mass isotopomer analysis for pathway discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号