首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5′-leader sequence of precursor tRNA (pre-tRNA) in all phylogenetic domains. We have found that RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of RNase P RNA (PhopRNA) and five protein cofactors designated PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38. Biochemical characterizations over the past 10 years have revealed that PhoPop5 and PhoRpp30 fold into a heterotetramer and cooperate to activate a catalytic domain (C-domain) in PhopRNA, whereas PhoRpp21 and PhoRpp29 form a heterodimer and function together to activate a specificity domain (S-domain) in PhopRNA. PhoRpp38 plays a role in elevation of the optimum temperature of RNase P activity, binding to kink-turn (K-turn) motifs in two stem-loops in PhopRNA. This review describes the structural and functional information on P. horikoshii RNase P, focusing on the structural basis for the PhopRNA activation by the five RNase P proteins.  相似文献   

2.
The protein component PhoRpp38 of Pyrococcus horikoshii ribonuclease P (RNase P) is known to be a multifunctional RNA-binding protein. Previous biochemical data indicate that it binds to two stem-loops in RNase P RNA (PhopRNA). Thermodynamic analysis revealed that PhoRpp38 and PhopRNA interact with each other with an association constant (Ka) of 1.56 × 107 M?1. It was further found that PhoRpp38 simultaneously binds two stem-loop structures in PhopRNA with approximately equal affinity. Crystals of PhoRpp38 in complex with the stem-loop were grown and diffracted to a resolution of 7.0 Å on a synchrotron X-ray source.  相似文献   

3.
Ribonuclease P (RNase P) is involved in the processing of the 5′ leader sequence of precursor tRNA (pre-tRNA). We have found that RNase P RNA (PhopRNA) and five proteins (PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38) reconstitute RNase P activity with enzymatic properties similar to those of the authentic ribozyme from the hyperthermophilic archaeon Pyrococcus horikoshii OT3. We report here that nucleotides A40, A41, and U44 at helix P4, and G269 and G270 located at L15/16 in PhopRNA, are, like the corresponding residues in Esherichia coli RNase P RNA (M1RNA), involved in hydrolysis by coordinating catalytic Mg2+ ions, and in the recognition of the acceptor end (CCA) of pre-tRNA by base-pairing, respectively. The information reported here strongly suggests that PhopRNA catalyzes the hydrolysis of pre-tRNA in approximately the same manner as eubacterial RNase P RNAs, even though it has no enzymatic activity in the absence of the proteins.  相似文献   

4.
Ribonuclease P (RNase P) is a ubiquitous trans-acting ribozyme that processes the 5′ leader sequence of precursor tRNA (pre-tRNA). The RNase P RNA (PhopRNA) of the hyperthermophilic archaeon Pyrococcus horikoshii OT3 is central to the catalytic process and binds five proteins (PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38) which contribute to the enzymatic activity of the holoenzyme. Despite significant progress in determining the crystal structure of the proteins, the structure of PhopRNA remains elusive. Comparative analysis of the RNase P RNA sequences and existing crystallographic structural information of the bacterial RNase P RNAs were combined to generate a phylogenetically supported three-dimensional (3-D) model of the PhopRNA. The model structure shows an essentially flat disk with 16 tightly packed helices and a conserved face suitable for the binding of pre-tRNA. Moreover, the structure in solution was investigated by enzymatic probing and small-angle X-ray scattering (SAXS) analysis. The low resolution model derived from SAXS and the comparative 3-D model have similar overall shapes. The 3-D model provides a framework for a better understanding of structure–function relationships of this multifaceted primordial ribozyme.  相似文献   

5.
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of the 5′-leader sequence of precursor tRNA. Human RNase P protein subunits Rpp21 and Rpp29, which bind to each other, with catalytic RNA (H1 RNA) are sufficient for activating endonucleolytic cleavage of precursor tRNA. Here we have determined the crystal structure of the complex between the Pyrococcus horikoshii RNase P proteins PhoRpp21 and PhoRpp29, the archaeal homologs of Rpp21 and Rpp29, respectively. PhoRpp21 and PhoRpp29 form a heterodimeric structure where the two N-terminal helices (α1 and α2) in PhoRpp21 predominantly interact with the N-terminal extended structure, the β-strand (β2), and the C-terminal helix (α3) in PhoRpp29. The interface is dominated by hydrogen bonds and several salt bridges, rather than hydrophobic interactions. The electrostatic potential on the surface of the heterodimer shows a positively charged cluster on one face, suggesting a possible RNA-binding surface of the PhoRpp21-PhoRpp29 complex. The present structure, along with the result of a mutational analysis, suggests that heterodimerization between PhoRpp21 and PhoRpp29 plays an important role in the function of P. horikoshii RNase P.  相似文献   

6.
We investigated the contribution of peripheral stem-loops to the catalytic activity of an archaeal RNase P RNA, PhopRNA, from Pyrococcus horikoshii OT3. PhopRNA mutants, in which the stem-loops were individually deleted, were prepared and characterized with respect to precursor tRNA (pre-tRNA) cleavage activity in the presence of five RNase P proteins. All the mutants retained the activity to some extent, indicating that they are moderately implicated in catalysis. Further characterization suggested that the stem-loops serve largely as binding sites for the proteins, and that their interactions are predominantly involved in stabilization of the active conformation of PhopRNA.  相似文献   

7.
The ribonuclease P (RNase P) proteins TkoPop5 and TkoRpp30, homologs of human Pop5 and Rpp30, respectively, in the hyperthermophilic archaeon Thermococcus kodakarensis were prepared and characterized with respect to pre-tRNA cleavage activity using the reconstitution system of the well-studied Pyrococcus horikoshii RNase P. The reconstituted particle containing TkoPop5 in place of the P. horikoshii counterpart PhoPop5 retained pre-tRNA cleavage activity comparable to that of the reconstituted P. horikoshii RNase P, while that containing TkoRpp30 instead of its corresponding protein PhoRpp30 had slightly lower activity than the P. horikoshii RNase P. Moreover, we determined crystal structures of TkoRpp30 alone and in complex with TkoPop5. Like their P. horikoshii counterparts, whose structures were solved previously, TkoRpp30 and TkoPop5 fold into TIM barrel and RRM-like fold, respectively. This finding demonstrates that RNase P proteins in T. kodakarensis and P. horikoshii are interchangeable and that their three-dimensional structures are highly conserved.  相似文献   

8.
The human ribonucleoprotein ribonuclease P (RNase P), processing tRNA, has at least 10 distinct protein subunits. Many of these subunits, including the autoimmune antigen Rpp38, are shared by RNase MRP, a ribonucleoprotein enzyme required for processing of rRNA. We here show that constitutive expression of exogenous, tagged Rpp38 protein in HeLa cells affects processing of tRNA precursors. Alterations in the site-specific cleavage and in the steady-state level of 3′ sequences of the internal transcribed spacer 1 of rRNA are also observed. These processing defects are accompanied by selective shut-off of expression of Rpp38 and by low expression of the tagged protein. RNase P purified from these cells exhibits impaired activity in vitro. Moreover, inhibition of Rpp38 by the use of small interfering RNA causes accumulation of the initiator methionine tRNA precursor. Expression of other protein components, but not of the H1 RNA subunit, is coordinately inhibited. Our results reveal that normal expression of Rpp38 is required for the biosynthesis of intact RNase P and for the normal processing of stable RNA in human cells.  相似文献   

9.
Ribonuclease P (RNase P) is an essential enzyme that processes the 5' leader sequence of precursor tRNA. Eubacterial RNase P is an RNA enzyme, while its eukaryotic counterpart acts as catalytic ribonucleoprotein, consisting of RNA and numerous protein subunits. To study the latter form, we reconstitute human RNase P activity, demonstrating that the subunits H1 RNA, Rpp21, and Rpp29 are sufficient for 5' cleavage of precursor tRNA. The reconstituted RNase P precisely delineates its cleavage sites in various substrates and hydrolyzes the phosphodiester bond. Rpp21 and Rpp29 facilitate catalysis by H1 RNA, which seems to require a phylogenetically conserved pseudoknot structure for function. Unexpectedly, Rpp29 forms a catalytic complex with M1 RNA of E. coli RNase P. The results uncover the core components of eukaryotic RNase P, reveal its evolutionary origin in translation, and provide a paradigm for studying RNA-based catalysis by other nuclear and nucleolar ribonucleoprotein enzymes.  相似文献   

10.
Rpp20 and Rpp25 are two key subunits of the human endoribonucleases RNase P and MRP. Formation of an Rpp20–Rpp25 complex is critical for enzyme function and sub-cellular localization. We present the first detailed in vitro analysis of their conformational properties, and a biochemical and biophysical characterization of their mutual interaction and RNA recognition. This study specifically examines the role of the Rpp20/Rpp25 association in the formation of the ribonucleoprotein complex. The interaction of the individual subunits with the P3 arm of the RNase MRP RNA is revealed to be negligible whereas the 1:1 Rpp20:Rpp25 complex binds to the same target with an affinity of the order of nM. These results unambiguously demonstrate that Rpp20 and Rpp25 interact with the P3 RNA as a heterodimer, which is formed prior to RNA binding. This creates a platform for the design of future experiments aimed at a better understanding of the function and organization of RNase P and MRP. Finally, analyses of interactions with deletion mutant proteins constructed with successively shorter N- and C-terminal sequences indicate that the Alba-type core domain of both Rpp20 and Rpp25 contains most of the determinants for mutual association and P3 RNA recognition.  相似文献   

11.
The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5′ leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode of action of Rpp29 to that of the C5 protein in activation of M1 RNA. Enzyme kinetic analyses reveal that complexes of M1 RNA–Rpp29 and M1 RNA–C5 exhibit comparable binding affinities to precursor tRNA but different catalytic efficiencies. High concentrations of substrate impede the activity of the former complex. Rpp29 itself exhibits high affinity in substrate binding, which seems to reduce the catalytic efficiency of the reconstituted ribonucleoprotein. Rpp29 has a conserved C-terminal domain with an Sm-like fold that mediates interaction with M1 RNA and precursor tRNA and can activate M1 RNA. The results suggest that distinct protein folds in two unrelated protein cofactors can facilitate transition from RNA- to ribonucleoprotein-based catalysis by RNase P.  相似文献   

12.
Rpp14 and Rpp29, two protein subunits of human ribonuclease P   总被引:6,自引:3,他引:3       下载免费PDF全文
In HeLa cells, the tRNA processing enzyme ribonuclease P (RNase P) consists of an RNA molecule associated with at least eight protein subunits, hPop1, Rpp14, Rpp20, Rpp25, Rpp29, Rpp30, Rpp38, and Rpp40. Five of these proteins (hPop1p, Rpp20, Rpp30, Rpp38, and Rpp40) have been partially characterized. Here we report on the cDNA cloning and immunobiochemical analysis of Rpp14 and Rpp29. Polyclonal rabbit antibodies raised against recombinant Rpp14 and Rpp29 recognize their corresponding antigens in HeLa cells and precipitate catalytically active RNase P. Rpp29 shows 23% identity with Pop4p, a subunit of yeast nuclear RNase P and the ribosomal RNA processing enzyme RNase MRP. Rpp14, by contrast, exhibits no significant homology to any known yeast gene. Thus, human RNase P differs in the details of its protein composition, and perhaps in the functions of some of these proteins, from the yeast enzyme.  相似文献   

13.
RNase MRP is a eukaryotic endoribonuclease involved in nucleolar and mitochondrial RNA processing events. RNase MRP is a ribonucleoprotein particle, which is structurally related to RNase P, an endoribonuclease involved in pre-tRNA processing. Most of the protein components of RNase MRP have been reported to be associated with RNase P as well. In this study we determined the association of these protein subunits with the human RNase MRP and RNase P particles by glycerol gradient sedimentation and coimmunoprecipitation. In agreement with previous studies, RNase MRP sedimented at 12S and 60-80S. In contrast, only a single major peak was observed for RNase P at 12S. The analysis of individual protein subunits revealed that hPop4 (also known as Rpp29), Rpp21, Rpp20, and Rpp25 only sedimented in 12S fractions, whereas hPop1, Rpp40, Rpp38, and Rpp30 were also found in 60-80S fractions. In agreement with their cosedimentation with RNase P RNA in the 12S peak, coimmunoprecipitation with VSV-epitope-tagged protein subunits revealed that hPop4, Rpp21, and in addition Rpp14 preferentially associate with RNase P. These data show that hPop4, Rpp21, and Rpp14 may not be associated with RNase MRP. Furthermore, Rpp20 and Rpp25 appear to be associated with only a subset of RNase MRP particles, in contrast to hPop1, Rpp40, Rpp38, and Rpp30 (and possibly also hPop5), which are probably associated with all RNase MRP complexes. Our data are consistent with a transient association of Rpp20 and Rpp25 with RNase MRP, which may be inversely correlated to its involvement in pre-rRNA processing.  相似文献   

14.
The precise location of the tRNA processing ribonucleoprotein ribonuclease P (RNase P) and the mechanism of its intranuclear distribution have not been completely delineated. We show that three protein subunits of human RNase P (Rpp), Rpp14, Rpp29 and Rpp38, are found in the nucleolus and that each can localize a reporter protein to nucleoli of cells in tissue culture. In contrast to Rpp38, which is uniformly distributed in nucleoli, Rpp14 and Rpp29 are confined to the dense fibrillar component. Rpp29 and Rpp38 possess functional, yet distinct domains required for subnucleolar localization. The subunit Rpp14 lacks such a domain and appears to be dependent on a piggyback process to reach the nucleolus. Biochemical analysis suggests that catalytically active RNase P exists in the nucleolus. We also provide evidence that Rpp29 and Rpp38 reside in coiled bodies, organelles that are implicated in the biogenesis of several other small nuclear ribonucleoproteins required for processing of precursor mRNA. Because some protein subunits of RNase P are shared by the ribosomal RNA processing ribonucleoprotein RNase MRP, these two evolutionary related holoenzymes may share common intranuclear localization and assembly pathways to coordinate the processing of tRNA and rRNA precursors.  相似文献   

15.
In HeLa cells, ribonuclease P (RNase P), the tRNA processing enzyme consists of an RNA subunit (H1 RNA) associated with at least nine protein subunits, Rpp14, Rpp20, Rpp21, Rpp29 (hPop4), Rpp30, Rpp38, Rpp40, hPop1, and hPop5 (18.8 kDa). We report here the cloning and immuno-biochemical analysis of Rpp25, another protein subunit of RNase P. Polyclonal rabbit antibodies raised against recombinant Rpp25 recognize their corresponding antigens in RNase P-containing fractions purified from HeLa cells, and they also precipitate active holoenzyme. Furthermore, this protein has general RNA binding properties.  相似文献   

16.
The eukaryotic ribonuclease for mitochondrial RNA processing (RNase MRP) is mainly located in the nucleoli and belongs to the small nucleolar ribonucleoprotein (snoRNP) particles. RNase MRP is involved in the processing of pre-rRNA and the generation of RNA primers for mitochondrial DNA replication. A closely related snoRNP, which shares protein subunits with RNase MRP and contains a structurally related RNA subunit, is the pre-tRNA processing factor RNase P. Up to now, 10 protein subunits of these complexes have been described, designated hPop1, hPop4, hPop5, Rpp14, Rpp20, Rpp21, Rpp25, Rpp30, Rpp38 and Rpp40. To get more insight into the assembly of the human RNase MRP complex we studied protein–protein and protein–RNA interactions by means of GST pull-down experiments. A total of 19 direct protein–protein and six direct protein–RNA interactions were observed. The analysis of mutant RNase MRP RNAs showed that distinct regions are involved in the direct interaction with protein subunits. The results provide insight into the way the protein and RNA subunits assemble into a ribonucleoprotein particle. Based upon these data a new model for the architecture of the human RNase MRP complex was generated.  相似文献   

17.
Protein-RNA interactions in the subunits of human nuclear RNase P.   总被引:5,自引:3,他引:2       下载免费PDF全文
A yeast three-hybrid system was employed to analyze interactions in vivo between H1 RNA, the RNA subunit of human nuclear RNase P, and eight of the protein subunits of the enzyme. The genetic analysis indicates that subunits Rpp21, Rpp29, Rpp30, and Rpp38 interact directly with H1 RNA. The results of direct UV crosslinking studies of the purified RNase P holoenzyme confirm the results of the three-hybrid assay.  相似文献   

18.
Spinal muscular atrophy (SMA) is a neurodegenerative disorder resulting from homozygous loss of the SMN1 gene. To investigate SMN functions, we undertook the yeast two-hybrid screens and identified Drosophila Rpp20, a subunit of the RNase P and RNase MRP holoenzymes, to interact with the Drosophila SMN protein. Interaction between human SMN and Rpp20 was validated by in vitro binding assays and co-immunoprecipitation. The exons 3-4 of SMN are necessary and sufficient for binding to Rpp20. Binding efficiency between Rpp20 and SMNs with mutations in the Y-G domain is abrogated or reduced and correlated with severity of SMA disease. Immunofluorescence results indicate that Rpp20 is diffusely distributed throughout the cytoplasm with higher concentration observed in the nucleus. However, in response to stress, SMN forms aggregates and redistributes Rpp20 into punctuated cytoplasmic SMN granules. Our findings suggest a possible functional association of SMN with RNase P and RNase MRP complexes.  相似文献   

19.
Rpp20 and Rpp25 are subunits of the human RNase MRP and RNase P endoribonucleases belonging to the Alba superfamily of nucleic acid binding proteins. These proteins, which bind very strongly to each other, transiently associate with RNase MRP. Here, we show that the Rpp20-Rpp25 heterodimer is resistant to both high concentrations of salt and a nonionic detergent. The interaction of Rpp20 and Rpp25 with the P3 domain of the RNase MRP RNA appeared to be strongly enhanced by their heterodimerization. Coimmunoprecipitation experiments demonstrated that only a single copy of each of these proteins is associated with the RNase MRP and RNase P particles in HEp-2 cells. Both proteins accumulate in the nucleoli, which in case of Rpp20 is strongly dependent on its interaction with Rpp25. Finally, the results of overexpression and knock-down experiments indicate that their expression levels are codependent. Taken together, these data indicate that the Rpp20-Rpp25 heterodimerization regulates their RNA-binding activity, subcellular localization, and expression, which suggests that their interaction is also crucial for their role in RNase MRP/P function.  相似文献   

20.
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA). Our earlier study revealed that RNase P RNA (pRNA) and five proteins (PhoPop5, PhoRpp38, PhoRpp21, PhoRpp29, and PhoRpp30) in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 reconstituted RNase P activity that exhibits enzymatic properties like those of the authentic enzyme. In present study, we investigated involvement of the individual proteins in RNase P activity. Two particles (R-3Ps), in which pRNA was mixed with three proteins, PhoPop5, PhoRpp30, and PhoRpp38 or PhoPop5, PhoRpp30, and PhoRpp21 showed a detectable RNase P activity, and five reconstituted particles (R-4Ps) composed of pRNA and four proteins exhibited RNase P activity, albeit at reduced level compared to that of the reconstituted particle (R-5P) composed of pRNA and five proteins. Time-course analysis of the RNase P activities of R-4Ps indicated that the R-4Ps lacking PhoPop5, PhoRpp21, or PhoRpp30 had virtually reduced activity, while omission of PhoRpp29 or PhoRpp38 had a slight effect on the activity. The results indicate that the proteins contribute to RNase P activity in order of PhoPop5 > PhoRpp30 > PhoRpp21 > PhoRpp29 > PhoRpp38. It was further found that R-4Ps showed a characteristic Mg2+ ion dependency approximately identical to that of R-5P. However, R-4Ps had optimum temperature of around at 55 degrees C which is lower than 70 degrees C for R-5P. Together, it is suggested that the P. horikoshii RNase P proteins are predominantly involved in optimization of the pRNA conformation, though they are individually dispensable for RNase P activity in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号