首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
比色法测定Fenton反应产生的羟自由基   总被引:107,自引:0,他引:107  
Fenton反应产生的羟自由基能与水杨酸生成羟基化产物2,3-二羟基苯甲酸,用比色法测定其含量能间接测定羟自由基的生成量.通过对测定条件的研究,得到最佳的测定方案.可作为一种简便的筛选羟自由基清除剂的方法  相似文献   

2.
比色法测定Fenton反应产生的羟自由基及其应用   总被引:46,自引:0,他引:46  
Fenton反应产生的羟自由基与二甲亚砜反应,生成甲基亚磺酸,再与坚牢蓝BB盐反应生成偶氮砜,比色法测定其含量可间接测定OH·的生成量. 通过对测定条件的研究,得到最佳实验方案. 抗氧化剂药物硫脲和抗坏血酸与羟自由基清除率具有明显的量效关系. 测定了核桃、黑芝麻等几种天然食物的水提取物清除羟自由基的功能. 此法可用于羟自由基清除剂的筛选.  相似文献   

3.
Oxidative depolymerization of chitosan induced by oxygen radical-generating systems was studied. Chitosan, but not chitin, was susceptible to oxidative depolymerization by hydroxyl radical generated through Cu(II)–ascorbate and ultraviolet–H2O2 systems in time- and concentration-dependent manners. Superoxide, H2O2, and singlet oxygen did not cause depolymerization. Metal ion chelators inhibited depolymerization by Cu(II)–ascorbate system, suggesting that the formation of chitosan–copper ion complex is important in the oxidative depolymerization. The molecular weight of the initial product during depolymerization was similar to that of glucosamine. The results suggest that copper ion could tend to coordinate to the NH2-groups at the terminal of chitosan and hydroxyl radical generated at its binding site cut off chitosan at the near position.  相似文献   

4.
Fenton反应及其可能的活性产物   总被引:2,自引:0,他引:2  
活性氧对许多生物分子,如脂质、蛋白质和DNA等均可引起损伤,它与许多疾病过程相联系.由超氧阴离子自由基和过氧化氢所引起的许多损伤被认为与它们转变为反应活性更强的组分有关,这些组分包括羟自由基及可能的高价铁组分.实验材料及理论结果表明,当铁盐与过氧化氢混合时,除羟自由基产生以外,高价铁组分也被认为同时产生.Fenton试剂的活性中间体是一亲核加合物,其反应活性及其产物不同于游离态羟自由基的反应活性及产物.Fenton试剂的产物分布依赖于不同的过渡金属离子、不同的配位体、不同的反应底物以及不同的溶剂基体效应.  相似文献   

5.
To clarify the effect of superoxide dismutase (SOD) on the formation of hydroxyl radical in a standard reaction mixture containing 15 μM of xanthone, 0.1 M of 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and 45 mM of phosphate buffer (pH 7.4) under UVA irradiation, electron paramagnetic resonance (EPR) measurements were performed. SOD enhanced the formation of hydroxyl radicals. The formation of hydroxyl radicals was inhibited on the addition of catalase. The rate of hydroxyl radical formation also slowed down under a reduced oxygen concentration, whereas it was stimulated by disodium ethylenediaminetetraacetate (EDTA) and diethyleneaminepentaacetic acid (DETAPAC). Above findings suggest that O2, H2O2, and iron ions participate in the reaction. SOD possibly enhances the formation of the hydroxyl radical in reaction mixtures of photosensitizers that can produce O2 .  相似文献   

6.
Several investigators have challenged the widely held view that the hydroxyl radical is the primary oxidant formed in the reaction between the ferrous ion and hydrogen peroxide. In recent studies, using the ESR spin trapping technique, Yamazaki and Piette found that the stoichiometry of oxidant formation in the reaction between Fe2+ and H2O2 often shows a marked deviation from the expected value of 1:1 (I. Yamazaki and L. H. Piette (1990) J. Am. Chem. Soc. 113, 7588-7593). In order to account for these observations, it was suggested that additional oxidizing species are formed, such as the ferryl ion (FeO2+), particularly when iron is present at high concentration and chelated to EDTA.

In this paper it is shown that secondary reactions, involving the redox cycling of iron and the oxidation of the hydroxyl radical adduct of the spin trap 5,5-dimethyl-1-pyrroline-N-oxide(DMPO) by iron, operate under the reaction conditions employed by Yamazaki and Piette. Consequently, the stoichiometry of oxidant formation can be rationalized without the need to envisage the formation of oxidizing species other than the hydroxyl radical. It is also demonstrated that the iron(III) complex of DETAPAC can react directly with DMPO to form the DMPO hydroxyl radical adduct (DMPO/OH) in the absence of hydrogen peroxide. Therefore, to avoid the formation of (DMPO/OH) as an artefact, it is suggested that DETAPAC should not be used as a reagent to inactivate containating adventitious iron in experiments using DMPO.  相似文献   

7.
Hypochlorous acid reacts with the model iron(II) complex, ferrocyanide (Fe(CN)64-) in aqueous solution with the rate constant 220 ± 15 dm3 mol-1 s-1. Free hydroxyl radicals are formed in this reaction in 27% yield as shown by the hydroxylation of benzoate to give a product distribution identical to that of free (radiolytically generated) hydroxyl radicals. This reaction is three orders of magnitude faster than the analogous reaction involving hydrogen peroxide (the Fenton reaction), suggesting that the hypochlorous acid generated by activated neutrophils may be a source of hydroxyl radicals.  相似文献   

8.
The differing effects of O-methylated catecholamines and their dihydroxyphenyl precursors on the production of ?OH were quantified using a previously established specific salicylate hydroxylation assay in conjunction with a sensitive electrochemical detection system. The production of ?OH by the Fenton reaction was diminished significantly by O-methylated catecholamines (O-methyldopa, O-methyldopamine, O-methyltyrosine, and N-acetyl-O-methyldopamine), whereas radical production was augmented by dihydroxyphenyls (DOPA, dopamine, and N-acetyldopamine), including those with methylated side chains (N-methyldopamine and α-methyldopa). Monohydroxyphenyls such as octopamine, tyramine, tyrosine, and α-methyltyrosine had little or no effect on radical production. These data show that a methyl group positioned on the side chain of a catecholamine does not alter its pro-oxidant behavior, while a methyl group positioned on the aromatic ring renders the catecholamine sterically or kinetically unfavorable for coordination with transition metals, thus preventing the promotion of Fenton chemistry. These results highlight the importance of O-methylation in forming catechols that are less reactive than their dihydroxyphenyl precursors. Thus, factors regulating the methylation of brain catecholamines may play a crucial role in mediating neuronal integrity during aging and in the pathogenesis of certain neurodegenerative disorders. Competitive side-chain methylation reactions may sustain or perpetuate some dihydroxyphenyls, creating an oxidatively less favorable environment for cells than would result from compounds formed by O-methylation.  相似文献   

9.
The technique of E.S.R. spectroscopy, when employed in conjunction with a continuous flow system, provides direct evidence for the nature of free radicals formed from organic substrates in the presence of FeII and H2O2 in aqueous solution. It is shown, both via the identification of hydroxyl-radical adducts to alkenes and via the observed site-selectivity of radical attack, that the hydroxyl radical is formed as the reactive intermediate in the presence of various chelators (e.g. EDTA, DTPA). This approach also allows the rate constants for the FeII-H2O2 reaction in the presence of the different chelates to be determined; values obtained are in reasonable agreement with most of those measured by other methods. Examples of radical oxidation (by FeIII) and reduction (by FeII) are revealed.  相似文献   

10.
对锰离子参与类Fenton反应机理的研究   总被引:1,自引:0,他引:1  
锰主要以Mn2 形式存在,有人发现其具有与其他过渡性金属离子截然相反的抗氧化活性,采用自旋捕捉-ESR技术、芳环羟基化反应-高效液相色谱(HPLC)法和琼脂糖电泳法三种方法研究Mn2 参与类Fenton反应的情况时,均检测到Mn2 与H2O2反应产生.OH,Mn2 与H2O2反应可以发生类Fenton反应,产生.OH。这一现象的产生可能是Mn2 引起生物体内氧化损伤之故。同时显示,Mn2 的类Fenton反应是否产生.OH与反应过程Mn2 以及其他成分浓度有关(如高浓度抑制,低浓度促进),为诸多文献中Mn2 作为促氧化剂还是抗氧化剂的争论提供了可能解释。同时Mn2 能引起.OH持续低量的产生为一些慢性疾病的发生提供了合理的解释。  相似文献   

11.
The reaction of FeII oxalate with hydrogen peroxide and dioxygen was studed for oxalate concentrations up to 20 mM and pH 2-5, under which conditions mono- and bis-oxalate comlexes (FeII(ox) and FeII(ox)22-) and uncomplexed Fe2+ must be considered. The reaction of FeII oxalate with hydrogen peroxide (Fe2+ + H2O2 → Fe3+ + *OH + OH-) was monitored in continuous flow by ESR with t-butanol as a radical trap. The reaction is much faster than for uncomplexed Fe2+ and a rate constant, k = 1 × 104 M-1 s-1 is deduced for FeII(ox). The reaction of FeII oxalate with dioxygen is strongly pH dependent in a manner which indicates that the reactive species is FeII(ox)22-, for which an apparent second order rate constant, k = 3.6 M-1 s-1, is deduced. Taken together, these results provide a mechanism for hydroxyl radical production in aqueous systems containing FeII complexed by oxalate. Further ESR studies with DMPO as spin trap reveal that reaction of FeII oxalate with hydrogen peroxide can also lead to formation of the carboxylate radical anion (CO2*-), an assignment confirmed by photolysis of FeIII oxalate in the presence of DMPO.  相似文献   

12.
《Free radical research》2013,47(6):415-422
Incubation of horse-heart oxymyoglobin or metmyoglobin with excess H2O2 causes formation of myoglobin(IV), followed by haem degradation. At the time when haem degradation is observed, hydroxyl radicals (.OH) can be detected in the reaction mixture by their ability to degrade the sugar deoxyribose. Detection of hydroxyl radicals can be decreased by transferrin or by OH scavengers (mannitol, arginine, phenylalanine) but not by urea. Neither transferrin nor any of these scavengers inhibit the haem degradation. It is concluded that intact oxymyoglobin or metmyoglobin molecules do not react with H2O2 to form OH detectable by deoxyribose, but that H2O2 eventually leads to release of iron ions from the proteins. These released iron ions can react to form OH outside the protein or close to its surface. Salicylate and the iron chelator desferrioxamine stabilize myoglobin and prevent haem degradation. The biological importance of OH generated using iron ions released from myoglobin by H2O2 is discussed in relation to myocardial reoxygenation injury.  相似文献   

13.
Ansamycin antibiotics (1–4) were isolated from the cultured broth of Streptomyces sp. USF-319 strain as a result of our screening for free radical scavengers. They inhibited the bactericidal effect of the Fenton reagent toward Bacillus subtilis by their radical scavenging activity. Some of them also showed inhibitory activity against lipid peroxidation and lipoxygenases.  相似文献   

14.
DNA or 2-deoxyguanosine reacts with hydroxyl free radical to form 8-hydroxy-deoxyguanosine (8-OH-dG). We found that 8-OH-dG can be effectively separated from deoxyguanosine by high pressure liquid chromatography and very sensitively detected using electrochemical detection. The sensitivity by electrochemical detection is about one-thousand fold enhanced over optical detection. Utilizing deoxyguanosine in bicarbonate buffer it was found that ferrous ion, but not ferric ion, was effective in forming 8-OH-dG. The hydroxyl free radical scavenging agents, thiourea and ethanol, were very effective in quenching Fe(11) mediated 8-OH-dG formation, but superoxide dismutase had very little effect.  相似文献   

15.
《Free radical research》2013,47(3):163-172
DNA or 2-deoxyguanosine reacts with hydroxyl free radical to form 8-hydroxy-deoxyguanosine (8-OH-dG). We found that 8-OH-dG can be effectively separated from deoxyguanosine by high pressure liquid chromatography and very sensitively detected using electrochemical detection. The sensitivity by electrochemical detection is about one-thousand fold enhanced over optical detection. Utilizing deoxyguanosine in bicarbonate buffer it was found that ferrous ion, but not ferric ion, was effective in forming 8-OH-dG. The hydroxyl free radical scavenging agents, thiourea and ethanol, were very effective in quenching Fe(11) mediated 8-OH-dG formation, but superoxide dismutase had very little effect.  相似文献   

16.
The polymorphonuclear leukocyte secretes both O2-and H2O2 when stimulated by various soluble or particulate stimuli. Since a rcaction involving iron, O2-, and H2O2 could generate the hydroxyl radical (HO.) there has been speculation that the HO-may participate in the bactericidal activity of the neutroph-il. A variety of water-soluble HO. scavengers have been used to test for the participation of HO. and the results imply that HO. might participate. However, other workers have not been able to detect the formation of significant amounts of HO-by the activated neutrophil. We have examined the effect of several commonly used HO. radical scavengers on the ability of the neutrophil to secrete O2-and H2O2. Several of these compounds actively inhibit secretion without affecting the viability of the neutrophil. After considering the various complications inherent in using water soluble radical scavengers, we suggest that they only be used with well defined experimental systems.  相似文献   

17.
The competition method in which the Fenton reaction is employed as an OH radical generator and deoxyribose as a detecting molecule, has been used to determine the rate constants for reactions of the OH radical with its scavengers. Nonlinear competition plots were obtained for those scavengers which reacted with the Fenton reagents (Fe2+ or H2O2). Ascorbic acid is believed to overcome this problem. We have investigated the kinetics of deoxyribose degradation by -OH radicals generated by the Fenton reaction in the presence of ascorbic acid, and observed that the inclusion of ascorbic acid in the Fenton system greatly increased the rate of OH radical generation. As a result, the interaction between some scavengers and the Fenton reagents became negligeable and linear competition plots of A7A vs scavenger concentrations were obtained. The effects of experimental conditions such as, the concentrations of ascorbic acid, deoxyribose, H2O2 and Fe2+-EDTA, the EDTA/Fe2+ ratio as well as the incubation time, on the deoxyribose degradation and the determination of the rate constant for mercaptoethanol chosen as a reference compound were studied. The small standard error, (6.76± 0.21) ±' 109M-1s-1 observed for the rate constant values for mercaptoethanol determined under 13 different experimental conditions, indicates the latter did not influence the rate constant determination. This is in fact assured by introducing a term, kx, into the kinetic equation. This term represents the rate of-OH reactions with other reagents such as ascorbic acid, Fe2+-EDTA, H2O2 etc. The agreement of the rate constants obtained in this work with that determined by pulse radiolysis techniques for cysteine, thiourea and many other scavengers, suggests that this simple competition method is applicable to a wide range of compounds, including those which react with the Fenton reagents and those whose solubility in water is low.  相似文献   

18.
Steroid myopathy is a well-known adverse effect of glucocorticoids that causes muscle weakness and atrophy; however, its pathogenic mechanism is still unclear. Recently, oxidative stress was reported to contribute to steroid myopathy, but there is no report that actually attempts to measure hydroxyl radical. I developed an animal model of steroid myopathy in rat with dexamethasone (9-Fluoro−11β,17, 21-trihydroxy−16α-methylpregna−1,4-diene−3,20-dione), and measured hydroxyl radical using the salicylate trapping method. There was significant dose-dependent relation between both 2,5- and 2,3-dihydroxybenzoic acids and dexamethasone in the treated group, compared to the control group. These results suggest that hydroxyl radical plays a role in the pathogenesis of steroid myopathy.  相似文献   

19.
When a variety of ferric chelates are reacted with hydrogen peroxide in phosphate buffer deoxyribose is damaged and this damage is protected against by formate, thiourea and mannitol. Damage done by ferric complexes of citrate, EDTA, NTA, EGTA and HEDA is substantially inhibited by superoxide dismutase (SOD) whereas complexes of PLA. ADP and CDTA are moderately inhibited by SOD. The effects of SOD argue against hydrogen peroxide acting as a reductant in Fenton chemistry driven by ferric complexes and hydrogen peroxide. EDTA has proved to be a useful model for Fenton chemistry that is inhibited by SOD although, it is not unique in this respect.  相似文献   

20.
Spin-trapping electron spin resonance (ESR) was used to monitor the formation of superoxide and hydroxyl radicals in D1/D2/cytochrome b-559 Photosystem II reaction center (PS II RC) Complex. When the PS II RC complex was strongly illuminated, superoxide was detected in the presence of ubiquinone. SOD activity was detected in the PS II RC complex. A primary product of superoxide, hydrogen peroxide, resulted in the production of the most destructive reactive oxygen species, *OH, in illuminated PS II RC complex. The contributions of ubiquinone, SOD and H(2)O(2) to the photobleaching of pigments and protein photodamage in the PS II RC complex were further studied. Ubiquinone protected the PS II RC complex from photodamage and, interestingly, extrinsic SOD promoted this damage. All these results suggest that PS II RC is an active site for the generation of superoxide and its derivatives, and this process protects organisms during strong illumination, probably by inhibiting more harmful ROS, such as singlet oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号