首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of glycerin and ethylene glycol on the elastic modulus and DSC thermograms of agarose and kappa-carrageenan gels were examined to clarify the relation between structure and properties. The elastic modulus of these gels as a function of the concentration of polyols increased up to a certain concentration and then decreased with increasing concentration of polyols. These polyols shifted the melting temperature of the gel to higher temperatures in kappa-carrageenan gels but to lower temperatures in agarose gels. The temperature dependence of elastic modulus was changed in opposite directions in agarose and kappa-carrageenan gels by the addition of polyols, and this is discussed on the basis of model consisting of junction zones which are connected by Langevin chains. It was suggested that the mean distance between junction zones became shorter in the presence of a small amount of polyols.  相似文献   

2.
Changes in gellan polymer morphology during the sol-gel transition were directly visualized by transmission electron microscopy and a model incorporating these changes and existing physical data is proposed. Our observations suggest that the most thermodynamically stable conformations of gellan polymers in solution, in the absence of added cations, are the double helix and double-helical duplexes. We have demonstrated two forms of lateral aggregation of gellan helices in the presence of Ca(2+) and K(+) ions. One type forms junction zones that lead to network formation and gelation, while the second type leads to the formation of isolated fibers of aggregated helices and inhibition of gelation. The proposed model of gellan gelation is based on these observations where thermoreversibility, gel strength, and endothermic transitions of gellan gels can be explained.  相似文献   

3.
The stability of the two isoforms of poplar plastocyanin (PCa and PCb) was studied with differential scanning calorimetry (DSC) technique. It was shown that the thermal unfolding of both isoforms is an irreversible process with two endothermic and one exothermic peaks. The melting temperature of PCb was found to be 1.3+/-0.2 K degrees higher than of PCa, which indicates that PCb is more stable. The enthalpy of unfolding was estimated from the heat capacity curves and was found to be significantly higher for PCb at salt concentration I=0.1 M. In addition, PCb unfolding enthalpy and melting temperature are much more sensitive to the changes in the salt concentration as found in the experiments done at different ionic strength. The experiments were complemented with numerical calculations. The salt effect on the stability was modeled using the X-ray structure of PCa and a homology modeled structure of PCb. It was found, in agreement with the experimental data, that the stability of PCb changes by 4.7 kJ more than PCa, as the salt concentration increases from zero to 0.1 M. Thus, the differences in only 12 amino acid positions between "a" and "b" isoforms result in a measurable difference in the folding enthalpy and a significant difference in the salt dependence. The optimization of the electrostatic energies of PCa and PCb were studied and it was shown that PCb is better electrostatically optimized.  相似文献   

4.
The binding effect of divalent cation Cu(2+) on the gelation process with a coil-helix transition in Cu(2+)/gellan aqueous solutions has been successfully elucidated by EPR, CD, and viscoelasticity measurements. Generally, Na-type gellan gum in aqueous solution can make gel when accompanied by an intrinsic coil-helix formation induced by hydrogen bonding between chains without any additional cations at T(ch)(-)(in) ( approximately 29 degrees C) with cooling temperature. An extrinsic coil-helix transition, induced by additional divalent cations in advance of the intrinsic sol-gel transition of gellan gum, is separately detected by CD measurement. The extrinsic coil-helix transition temperatures T(ch)(-)(ex) (>47 degrees C), which increased with the Cu(2+) concentration added, were nearly identical to the sol-gel transition temperature, T(sg), determined by the viscoelasticity measurement. Judging from the molar ellipticity by CD measurement and quantitative analysis of EPR spectra, it was elucidated that the helix forming process via divalent cations is composed of two steps ascribed to the different origins, i.e., a chemical binding effect via Cu(2+) ions in the initial stage and hydrogen bonds subsequently. Finally, we propose the coil-helix and the sol-gel transition mechanism initiated by the binding effect with the divalent cation, in which the partial chelate formation can cause local formation of helices and junction zones in the vicinity of the chelates at the initial stage of the process and stabilize the helices and the junction zones. On the other hand, the stabilized helices and junction zones can induce further formation and further stabilization of the Cu(2+)-gellan chelates. The mutual stabilization promotes the formation of three-dimensional network structure at the higher temperature than the intrinsic temperature for network formation.  相似文献   

5.
The effect of immersion into salt solutions on rheological properties of gellan gels was investigated. The storage Young's modulus of gellan gels increased with time during the immersion into salt solutions. The increase of the storage Young's modulus can not be explained solely by change in the concentration of gellan. The ellipticity at 202 nm decreased by the immersion, suggesting the formation and aggregation of gellan helices. It was considered that during immersion cations penetrated into gellan gels to induce the formation and aggregation of gellan helices in gels, resulting in reinforcement of the gel network.  相似文献   

6.
The interaction of κ-carrageenan with locust bean gum and dextran has been studied by rheology, differential scanning calorimetry (DSC), and electron spin resonance spectroscopy (ESR). Rheological measurements show that the carrageenan gel characteristics are greatly enhanced in the presence of locust bean gum but not in the presence of dextran. Carrageenan/locust bean gum mixtures show two peaks in the dsc cooling curves. The higher temperature peak corresponds to the temperature of gelation and its intensity increases at the expense of the lower temperature peak as the proportion of locust bean gum in the mixture increases. Furthermore, the DSC heating curves show enhanced broadening when locust bean gum is present, indicating increased aggregation. These results are taken as evidence of carrageenan/locust bean gum association. The gelation process has also been followed by ESR using spin-labeled carrageenan. On cooling carrageenan solutions, an immobile component appears in the ESR spectra signifying a loss of segmental mobility consistent with chain stiffening due to the coil → helix conformational transition and helix aggregation. For carrageenan/locust bean gum mixtures, carrageenan ordering occurs at temperatures corresponding to the higher temperature DSC setting peak and the temperature of gelation. Similar studies using spin-labeled locust bean gum show that its mobility remains virtually unaffected during the gelation process. It is evident, therefore, that carrageenan and locust bean gum interact only weakly. It is proposed that at low carrageenan concentrations the gel network consists of carrageenan helices cross-linked by locust bean gum chains. At high carrageenan concentrations the network is enhanced by the additional self-aggregation of the “excess” carrageenan molecules. For carrageenan/dextran mixtures, only one peak is observed in the dsc cooling curves. The onset of gelation shifts to higher temperatures only at very high (20%) dextran concentrations and this is attributed to volume exclusion effects. Furthermore, there is no enhanced broadening of the peaks in the DSC heating curves as for the carrageenan/locust bean gum systems. It is therefore concluded that carrageenan/dextran association does not occur. The difference in behavior between locust bean gum and dextran is attributed to the greater flexibility of the dextran chains. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
The solution properties of κ-carrageenan and κ-carrageenan/locust bean gum mixtures have been studied by small deformation oscillation measurements and differential scanning calorimetry (DSC) in the presence of sodium chloride and sodium iodide. Both salts induced the κ-carrageenan to undergo a coil-helix conformational change as noted by an increase in the storage and loss moduli (G′, G′) and by an exothermic peak in the DSC cooling curves. The enthalpy ΔHc-h and temperature of the conformational transition Tc-h were higher in Nal compared to NaCl and Tc-h increased with increasing the concentration of both electrolytes. Gelation was not observed for carrageenan or carrageenan/locust bean gum mixtures in the presence of up to 200 mM Nal. Although carrageenan alone did not gel in the presence of 100 mM NaCl, a weak gel was obtained for a mixture containing 0.9%/0.1% carrageenan/locust bean gum. Furthermore, the mixture showed hysteresis in both the rheological and DSC cooling and heating curves. A strong gel was produced for carrageenan alone in the presence of 200 mM NaCl and the gel strength increased on adding a small proportion of locust bean gum (0.9%/0.1%). © 1997 John Wiley & Sons, Inc. Biopoly 41: 657–671, 1997  相似文献   

8.
TEXTURE OF SWEET ORANGE GELS BY FREE-CHOICE PROFILING   总被引:2,自引:0,他引:2  
Texture of orange gels prepared with 15% fruit pulp, sucrose up to 55° Brix and five different gelling agents — kappa-carrageenan, kappa-carrageenan plus locust bean gum, alginate, gellan gum, and gellan, xanthan and locust bean gums — was studied by Free-Choice Profile (FCP) analysis. Maximum rupture force and deformation at rupture were also determined by uniaxial compression in an Instron texturometer. Generalized Procrustes Analysis applied to FCP data permitted differentiation between samples and informed on the textural attributes responsible for the observed differences. Sensory differences were in general in accordance with mechanical differences. However, carrageenan and gellan gum gels were differentiated with the sensory method applied but not with mechanical tests.  相似文献   

9.
The melting curves of 11 vegetable oils have been characterised. Vegetable oil samples that were cooled at a constant rate (5 degrees C/min) from the melt showed between one and seven melting endotherms upon heating at four different heating rates (1, 5, 10 and 20 degrees C/min) in a differential scanning calorimeter (DSC). Triacylglycerol (TAG) profiles and iodine value analyses were used to complement the DSC data. Generally, the melting transition temperature shifted to higher values with increased rates of heating. The breadth of the melting endotherm and the area under the melting peak also increased with increasing heating rate. Although the number of endothermic peaks was dependent on heating rate, the melting curves of the oil samples were not straightforward in that there was no correlation between the number of endothermic peaks and heating rates. Multiple melting behaviour in DSC experiments with different heating rates could be explained by: (1) the melting of TAG populations with different melting points; and (2) TAG crystal reorganisation effects. On the basis of the corollary results obtained, vegetable oils and fats may be distinguished from their offset-temperature (Toff) values in the DSC melting curves. The results showed that Toff values of all oil samples were significantly (p < 0.01) different in the melting curves scanned at four different scanning rates. These calorimetric results indicate that DSC is a valuable technique for studying vegetable oils.  相似文献   

10.
Circular birefringence (CB, or optical rotation) and linear birefringence (LB) were measured for gellan gum aqueous solutions with and without salt to examine the gelling system in the helical structure as well as in the orientation. It was found that gelling samples with salt show nonzero LB values, whereas LB is zero for the samples without salt even in the gel state. This difference can be explained by the thermal deformation of the system containing anisotropic aggregations of helices formed with the shielding effect of the added salt on the intramolecular and intermolecular electrostatic repulsions. Considering that the presence of LB in the system affects the estimation of CB, we developed an original procedure of the CB measurement to eliminate the contribution of LB. It was shown that our methods for eliminating the contribution of LB can improve the CB measurement for the gellan gum gel. The temperature dependence of [alpha] for the samples with salt in the gel state is quite different from that for the samples without salt, suggesting that the aggregates of helices in the samples containing a high concentration of salt form a supramolecular structure that contributes to CB.  相似文献   

11.
Differential scanning calorimetry (DSC) was used to examine the relationship of the gel to liquid-crystalline phase transition of lipids to fatty acid composition with membrane lipids and spheroplast membranes isolated from cells of a wild strain and an unsaturated fatty acid auxotroph of Escherichia coli grown under various conditions. These lipids and membranes underwent thermotropic phase transitions at different temperatures depending on the thermal properties of their constituent fatty acids. The lipid phase transition occurred at higher temperatures in biomembranes than in extracted lipids. DSC thermograms of lipids synthesized by bacterial cells which were observed at a temperature scanning rate as slow as 0.3 K min-1 were characterized by a distinctly plain peak summit. Endothermic peaks given by samples derived from elaidic acid-enriched cells were relatively narrow and asymmetric. The discrepancy between the transition temperatures measured with extracted lipids and with membraneous fractions, and the shape of the endothermic peaks, are discussed.  相似文献   

12.
Effects of partial replacement of gelatin in simulated gummy confections with either high acyl or deacylated gellan on their textural, rheological, and thermal properties were investigated. Atomic force microscopy (AFM) images of high acyl and deacylated gellan revealed that both gellan types formed finely stranded networks as a result from air-drying of dilute aqueous solutions, the strand thickness of which was approximately 0.5–1 nm. Simulated gummy confections containing 5.025–7.1 % w/w gelatin, 0–0.075 % w/w high acyl or deacylated gellan, and 73–75 % w/w corn syrup and sucrose combined were prepared and analyzed using texture profile analysis (TPA) and small amplitude oscillatory shear measurements. The principal component analysis (PCA) of textural attributes obtained from TPA identified a cluster in the first quadrant formed by samples containing 7.1 % w/w gelatin but no gellan and those containing 6.025 % w/w gelatin and 0.075 % w/w high acyl or deacylated gellan. All simulated gummy confections showed storage modulus (G′) values greater than loss modulus (G″) values at 0.1 rad/s, G″ increasing more steeply with increasing angular frequency, and G′-G″ crossovers within the examined angular frequency range (0.1–100 rad/s), typical of high solid biopolymer gels. Furthermore, increasing gellan concentration at a total concentration of the gelling agents (i.e., gelatin and gellan) of 6.1 % w/w increased the melting temperature. These results attest the feasibility of improving the heat stability of gummy confections by the partial replacement of gelatin with either high acyl or deacylated gellan with maintaining textures characteristics of gummy confections containing gelatin as the only gelling agent.  相似文献   

13.
The possible structure of lipophorin in insect blood (hemolymph) was investigated by differential scanning calorimetry (DSC) and 13C nuclear magnetic relaxation studies. The DSC heating curves of intact lipophorins showed endothermic peaks between -3 and 40 degrees C for lipophorins which contain hydrocarbons, whereas no such peaks were observed for lipophorins which do not contain this lipid. Hydrocarbon fractions isolated from the lipophorins showed endothermic peaks similar to those obtained from intact lipophorin in terms of the transition temperatures, the shapes, and the enthalpy changes. 13C spin lattice relaxation times of the (CH2)n resonance of hydrocarbons of intact lipophorin were measured as a function of temperature and revealed that the motions of hydrocarbon chains changed coincidentally with the onset and offset of phase transition. These data suggest the presence of a hydrocarbon-rich region within the lipophorin particles.  相似文献   

14.
The structure of heat-set systems of the globular protein bovine serum albumin (BSA) was investigated at pH 7 in different salt conditions (NaCl or CaCl(2)) using light scattering. Cross-correlation dynamic light scattering was used to correct for multiple scattering from turbid samples. After heat treatment, aggregates are formed whose size increases as the protein concentration increases. Beyond a critical concentration that decreases with increasing salt concentration, gels are formed. The heterogeneity and the reduced turbidity of the gels were found to increase with increasing salt concentration and to decrease with increasing protein concentration. The structure of the gels is determined by the strength of the repulsive electrostatic interactions between the aggregated proteins. The results obtained in NaCl are similar to those reported in previous studies for other globular proteins. CaCl(2) was found to be much more efficient in reducing electrostatic interactions than NaCl at the same ionic strength.  相似文献   

15.
Application of somatic embryogenesis to Pinus strobus clonal propagation and genetic improvement was hampered by the difficulty in achieving synchronous maturation of a large number of somatic embryos that would germinate and produce plants. Media containing abscisic acid (80 μ M ) and osmotic agents such as sucrose, polyethylene glycol and/or dextran did not sustain development of mature somatic embryos from plated embryonal masses. This indicated that factors other than osmotic agents might be involved in sustaining development of Pinus strobus somatic embryos to maturity. It was subsequently found that media lacking osmotica but containing a high concentration of gellan gum (1%) induced significant improvement in the development of mature somatic embryos in the presence of 80 or 120 μ M abscisic acid. This positive effect was independent of the genotype and all four tested lines displayed similar responses. Media containing gellan gum at concentrations from 0.4 to 1.2% formed gels that varied in their strength. Gel strength was proportional to the concentration of gellan gum in the specific medium but varied depending on the medium formulation. Gel strength increased with the duration of storage of the culture medium by 46% (SD 14) after 14 days of storage. Preliminary results showed that embryos matured on high gellan gum media displayed improved germination frequencies. These results indicate that in Pinus strobus the water status and possibly other medium characteristics that are influenced by increased concentration of gelling agent have stimulatory effects on maturation of somatic embryos.  相似文献   

16.
Thermally induced transition between anhydrous and hydrated forms of highly crystalline beta-chitin was studied by differential thermal calorimetry (DSC) and X-ray diffraction. DSC of wet beta-chitin in a sealed pan gave two well-defined endothermic peaks at 85.2 and 104.7 degrees C on heating and one broad exothermic peak at between 60 and 0 degrees C on cooling. These peaks were highly reproducible and became more distinct after repeated heating-cooling cycles. The X-ray diffraction pattern of wet beta-chitin at elevated temperature showed corresponding changes in d-spacing between the sheets formed by stacking of chitin molecules. These phenomena clearly show that water is reversibly incorporated into the beta-chitin crystal and that the temperature change induces transitions between anhydrous, monohydrate, and dihydrate forms. The DSC behavior in heating-cooling cycles, including reversion between the two endothermic peaks, indicated that the transition between monohydrate and dihydrate was a fast and narrow-temperature process, whereas the one between the anhydrous and the monohydrate form was a slow and wide-temperature process.  相似文献   

17.
Summary The influence of carbon sources and polyethylene glycol combined with 0.45 and 0.9% (w/v) of gellan gum on the maturation of maritime pine somatic embryos was tested. The effect of the carbon source and polyethylene glycol varied widely between lines. One out of the five lines tested showed a striking response to polyethylene glycol (PEG) treatment; the addition of this osmoticum limited the embryonal-suspensor mass (ESM) proliferation while it enhanced the maturation rate. Conversely, the ESM proliferation was stimulated by PEG in the other lines without subsequent improvement of the maturation rate. The use of a high concentration of gellan gum (0.9%) improved the maturation of the five ESM lines. It was concluded that the most efficient culture medium to recover cotyledonary embryos from all lines is one supplemented with sucrose at 6% (w/v) and gellan gum at 0.9% (w/v) without PEG. The determining factor in the maturation of maritime pine somatic embryos is the genotype and/or the quality of ESM. The possible relationship between maturation performances and ESM morphology, particularly the suspensor organization, is discussed.  相似文献   

18.
Rheological and DSC techniques were used to study the effect of κ-carrageenan and KCl concentrations, 0–300 mM, on the sol–gel transition as well as on the linear viscoelasticity, at 25 °C, of the resulting gels. In heating and cooling DSC tests, the peak temperature was taken as the sol–gel transition point. In rheological tests, sol–gel transitions were determined from the variation of dynamic moduli with frequency and temperature, the independence of the phase angle on frequency and the evolution with temperature of dynamic moduli on cooling and heating at constant frequency and strain. Transition temperatures from DSC and rheology were in good agreement among them and with those previously reported. The three procedures yielded similar results, but the transition temperatures were more easily determined through the independence of the phase angle on frequency. Frequency sweeps showed gel behavior with stiffness increasing with polysaccharide and salt concentration. Below 100 mM KCl, G′ increased notably, whereas higher concentrations produced only marginal increases.  相似文献   

19.
Properties of fish gelatin (FG) gel as affected by gellan (GL) at different levels (2.5–7.5% FG substitution) in combination with calcium chloride (CaCl2) at various concentrations (3–9 mM) were studied. Gel strength and hardness of FG/GL mixed gel increased as the levels of GL increased (P < 0.05). Increasing CaCl2 concentration also resulted in the increases in both gel strength and hardness of mixed gel when GL at the same level was incorporated (P < 0.05). Conversely, the increasing GL and CaCl2 levels caused a decrease in springiness but an increase in syneresis of mixed gels (P < 0.05). Gelling and melting temperatures were increased in the mixed gel as levels of GL and CaCl2 increased. L*- and b*-values of mixed gels decreased, whereas ?E*-value increased with increasing GL and CaCl2 levels (P < 0.05). Microstructure studies revealed that denser structure with smaller voids in gel network was observed in the mixed gel in the presence of CaCl2 at higher levels. However, mixed gels incorporated with GL above 5%, regardless of CaCl2 levels, yielded the lower likeness score than FG gel (control) (P < 0.05). The addition of GL at low level (2.5%) with CaCl2 (up to 6 mM) had no adverse effect on sensory property of mixed gels but could improve gelling property of FG via increasing gel strength and gelling point.  相似文献   

20.
Protoplasts isolated from cell suspension culture of Phalaenopsis “Wataboushi” were cultured by (a) embedding in gellan gum-solidified hormone-free 1/2 New Dogashima medium (1/2 NDM) containing 0.44 M sorbitol, 0.06 M sucrose and 0.1 g/l l-glutamine (standard method) and (b) beads method using beads of gellan gum or sodium alginate as the gelling agents which were surrounded by liquid NDM. Although, the two beads methods gave less frequency of initial protoplast division than the standard method, the former finally resulted in higher frequency of microcolony formation than the latter. The highest frequency of microcolony formation (23%) was obtained when protoplasts were embedded in 1% Ca-alginate beads and subcultured every two weeks by replacing the surrounding liquid culture medium with a decrease in sorbitol concentration by 0.1 M. Colonies visible to the naked eyes were observed within 2 months of culture and the regenerated calluses were transferred onto hormone-free NDM supplemented with 10 g/l maltose and 0.3% (w/v) gellan gum, on which PLBs were formed and proliferated profusely. The PLBs were regenerated into plantlets after changing the carbon source to 10 g/l sorbitol and successfully acclimatized to greenhouse conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号