首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11 contains three copies of the hao gene (hao1, hao2, and hao3) coding for hydroxylamine oxidoreductase (HAO). Three single mutants (hao1::kan, hao2::kan, or hao3::kan) had 68 to 75% of the wild-type growth rate and 58 to 89% of the wild-type HAO activity when grown under the same conditions. A double mutant (hao1::kan and hao3::amp) also had 68% of the wild-type growth and 37% of the wild-type HAO activity.  相似文献   

3.
4.
Two plasmids were discovered in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11, which was isolated from activated sludge. The plasmids, designated pAYS and pAYL, were relatively small, being approximately 1.9 kb long. They were cryptic plasmids, having no detectable plasmid-linked antibiotic resistance or heavy metal resistance markers. The complete nucleotide sequences of pAYS and pAYL were determined, and their physical maps were constructed. There existed two major open reading frames, ORF1 in pAYS and ORF2 in pAYL, each of which was more than 500 bp long. The predicted product of ORF2 was 28% identical to part of the replication protein of a Bacillus plasmid, pBAA1. However, no significant similarity to any known protein sequences was detected with the predicted product of ORF1. pAYS and pAYL had a highly homologous region, designated HHR, of 262 bp. The overall identity was 98% between the two nucleotide sequences. Interestingly, HHR-homologous sequences were also detected in the genomes of ENI-11 and the plasmidless strain Nitrosomonas europaea IFO14298. Deletion analysis of pAYS and pAYL indicated that HHR, together with either ORF1 or ORF2, was essential for plasmid maintenance in ENI-11. To our knowledge, pAYS and pAYL are the first plasmids found in the ammonia-oxidizing autotrophic bacteria.  相似文献   

5.
Pulsed-field gel electrophoresis of PmeI digests of the Nitrosomonas sp. strain ENI-11 chromosome produced four bands ranging from 1,200 to 480 kb in size. Southern hybridizations suggested that a 487-kb PmeI fragment contained two copies of the amoCAB genes, coding for ammonia monooxygenase (designated amoCAB(1) and amoCAB(2)), and three copies of the hao gene, coding for hydroxylamine oxidoreductase (hao(1), hao(2), and hao(3)). In this DNA fragment, amoCAB(1) and amoCAB(2) were about 390 kb apart, while hao(1), hao(2), and hao(3) were separated by at least about 100 kb from each other. Interestingly, hao(1) and hao(2) were located relatively close to amoCAB(1) and amoCAB(2), respectively. DNA sequence analysis revealed that hao(1) and hao(2) shared 160 identical nucleotides immediately upstream of each translation initiation codon. However, hao(3) showed only 30% nucleotide identity in the 160-bp corresponding region.  相似文献   

6.
M.sp.SDM11是一株能以甲醇为唯一碳源生长的细菌,初步发酵检测发现能转化甘氨酸为L-丝氨酸。QscR基因产物是甲基营养菌中丝氨酸循环的一个转录调控关键因子,根据在GenBank中已报道的QscR基因序列(登录号:NC_012988.1)设计引物,以M.sp.SDM11的染色体DNA为模板,利用PCR扩增得到一大小为987 bp的QscR基因,将该基因克隆到广泛宿主载体pLAFR3上,在帮助质粒pRK2013的介导下,利用三亲本结合使其导入到菌株SDM11中构建重组菌株SDM12。对SDM12进一步研究发现,重组菌株中与L-丝氨酸合成相关的关键酶丝氨酸羟甲基还原酶(SHMT)的酶活比野生型菌株SDM11要低,约为野生型菌株的70%左右,另一个酶——羟基丙酮酸还原酶(HPR)的酶活力也只有野生型的75%。进一步将菌株进行产L-丝氨酸研究,结果表明,重组菌的产L-丝氨酸能力也明显降低,约为野生型菌株的67%左右。  相似文献   

7.
Pseudomonas sp. OS-ALG-9 produces several kinds of alginate-degrading enzymes both intra- and extracellularly. As a second alginate lyase of this bacterium, the gene encoding alyII has been cloned in Escherichia coli JM109 by shotgun techniques and then sequenced. The alyII gene has an open reading frame of 2141 bp encoding 713 amino acid residues with a calculated molecular mass of 79,803 Da. The deduced amino acid sequence did not show any extensive similarity with those of other known alginate lyases, however, hydrophobic cluster analysis showed that alyII belonged to class 3 of alginate lyases. The alginate lyase from E. coli harboring the alyII gene showed a single active band, which coincided with one of four major alginate lyases from the crude cell extracts of Pseudomonas sp. OS-ALG-9 on a zymogram.  相似文献   

8.
The gene (empI) encoding an extracellular metal protease was isolated from a Pseudoalteromonas sp. strain A28 DNA library. The recombinant EmpI protein was expressed in E. coli and purified. Paper-disk assays showed that the purified protease had potent algicidal activity. A skim milk-polyacrylamide gel electrophoresis protease assay showed that the 38-kDa band of protease activity, which co-migrated with purified EmpI and was sensitive to 1,10-phenathroline, was detected in the extracellular supernatant of A28.  相似文献   

9.
从南极普利兹湾深海沉积物中筛选到一株耐冷菌株7197,其16S rDNA序列分析表明该菌株属于假单胞菌属(Pseudomonas)。作者通过设计引物,从该菌的全基因组DNA中克隆到编码S-腺苷-L-高半胱氨酸(SAHH)的完整ORF,全长为1424bp。使用DNAMAN(5,1)软件对全长ORF为1424bp的SAHH基因进行分析,SAHH基因编码一个由474AA残基组成、分子量预计为52523Da的SAHH蛋白质,与Psychrobacter sp.273—4的SAHH有96.84%的相似性;与Acinetobacter sp.ADP1的SAHH有79%的相似性;与Pseudomonas fluorescens Pf-5的SAHH有75%的相似性。  相似文献   

10.
11.
Band 7 proteins, which encompass members of the stomatin, prohibitin, flotillin, and HflK/C protein families, are integral membrane proteins that play important physiological roles in eukaryotes but are poorly characterized in bacteria. We have studied the band 7 proteins encoded by the cyanobacterium Synechocystis sp. strain PCC 6803, with emphasis on their structure and proposed role in the assembly and maintenance of the photosynthetic apparatus. Mutagenesis revealed that none of the five band 7 proteins (Slr1106, Slr1128, Slr1768, Sll0815, and Sll1021) was essential for growth under a range of conditions (including high light, salt, oxidative, and temperature stresses), although motility was compromised in an Slr1768 inactivation mutant. Accumulation of the major photosynthetic complexes in the thylakoid membrane and repair of the photosystem II complex following light damage were similar in the wild type and a quadruple mutant. Cellular fractionation experiments indicated that three of the band 7 proteins (Slr1106, Slr1768, and Slr1128) were associated with the cytoplasmic membrane, whereas Slr1106, a prohibitin homologue, was also found in the thylakoid membrane fraction. Blue native gel electrophoresis indicated that these three proteins, plus Sll0815, formed large (>669-kDa) independent complexes. Slr1128, a stomatin homologue, has a ring-like structure with an approximate diameter of 16 nm when visualized by negative stain electron microscopy. No evidence for band 7/FtsH supercomplexes was found. Overall, our results indicate that the band 7 proteins form large homo-oligomeric complexes but do not play a crucial role in the biogenesis of the photosynthetic apparatus in Synechocystis sp. strain PCC 6803.Members of the band 7 superfamily of proteins are found throughout nature and are defined by a characteristic sequence motif, termed the SPFH domain, after the initials of the various subfamilies: the stomatins, the prohibitins, the flotillins (also known as “reggies”), and the HflK/C proteins (12, 49). The stomatins and prohibitins and to a lesser extent flotillins are highly conserved protein families and are found in a variety of organisms ranging from prokaryotes to higher eukaryotes (29, 34, 49), whereas HflK and HflC homologues are only present in bacteria.In eukaryotes band 7 proteins are linked with a variety of disease states consistent with important cellular functions (6). In general the eukaryotic band 7 proteins tend to be oligomeric and are involved in membrane-associated processes: for example, prohibitins are involved in modulating the activity of a membrane-bound FtsH protease (17, 46) and the assembly of mitochondrial respiratory complexes (30), stomatins are involved in ion channel function (47), and flotillins are involved in signal transduction and vesicle trafficking (25).In the case of prokaryotes, most work so far has focused on the roles of the HflK/C and YbbK (also known as QmcA, a stomatin homologue) band 7 proteins of Escherichia coli (7, 16, 17, 36) and the structure of a stomatin homologue in the archaeon Pyrococcus horikoshii (57). Much less is known about the structure, function, and physiological importance of band 7 proteins in other prokaryotes, especially the cyanobacteria (12).The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 is a widely used model organism for studying various aspects of cyanobacterial physiology and, in particular, oxygenic photosynthesis. One of the main areas of our research is to understand the mechanism by which the oxygen-evolving photosystem II (PSII) complex found in the thylakoid membrane of Synechocystis sp. strain PCC 6803 is repaired following light damage. Recent work has identified an important role for FtsH proteases in PSII repair (19, 41). Given that FtsH is known to form large supercomplexes with HflK/C in E. coli (36) and with prohibitins in Saccharomyces cerevisiae mitochondria (46), we hypothesized that one or more band 7 proteins might interact with FtsH in cyanobacteria and play a role in the selective turnover of the D1 reaction center polypeptide during PSII repair and so provide resistance to high light stress (40). This idea was given early support by the detection of both FtsH and Slr1106, a prohibitin homologue, in a His-tagged PSII preparation isolated from Synechocystis sp. strain PCC 6803 (40) and the detection of Slr1128 (a stomatin homologue), Sll1021 (a possible flotillin homologue), and FtsH in a His-tagged preparation of ScpD, a small chlorophyll a/b-like-binding protein that associates with PSII (56). Recent mutagenesis experiments have also suggested a role for Slr1128 in maintaining growth at high light intensities (53).In this paper we have used targeted gene disruption mutagenesis and various biochemical approaches to investigate the structure and function of band 7 proteins in Synechocystis sp. strain PCC 6803, with particular emphasis on PSII function. We provide evidence that four predicted band 7 proteins in Synechocystis sp. strain PCC 6803 (Slr1106, Slr1768, Slr1128, and Sll8015) form large independent complexes, which in the case of Slr1128 forms a ring-like structure. No evidence was found for the formation of supercomplexes with FtsH. Importantly, single and multiple insertion mutants lacking up to four of the five band 7 proteins are able to grow as well as the wild type (WT) under a range of growth conditions, including high light stress. Our results suggest that band 7 proteins are not essential in Synechocystis sp. strain PCC 6803 and are not required for efficient PSII repair. Possible functions of the cyanobacterial band 7 proteins are discussed in the light of recent results from other systems.  相似文献   

12.
Aims:  Ebosin, a novel exopolysaccharide (EPS) produced by Streptomyces sp. 139 has antagonistic activity for interleukin-1 receptor (IL-1R) in vitro and remarkable anti-rheumatic arthritis activity in vivo. Ebosin biosynthesis gene ( ste ) cluster has been identified in our laboratory. This paper reports our effort to characterize the function of ste11 gene.
Methods and Results:  After the ste11 gene was cloned and expressed in Escherichia coli BL21, the recombinant Ste11 was purified and found capable of catalyzing NAD+ and l -threonine to NADH and 2-amino-3-ketobutyrate, hence identified as a threonine dehydrogenase (TDH). To investigate its function in the biosynthesis of Ebosin, the ste11 gene was knocked out with a double crossover via homologous recombination. The monosaccharide composition of EPS produced by the mutant strain (EPS-m) was altered from that of Ebosin. The analysis of IL-1R antagonist activity for EPSs showed that the bioactivity of EPS-m was lower than Ebosin.
Conclusions:  ste11 gene encoding a TDH may function as a modifier gene of Ebosin during its biosynthesis.
Significance and Impact of the Study:  TDH encoded by ste11 is functional in Ebosin biosynthesis. It is the first characterized TDH in Streptomyces .  相似文献   

13.
14.
Insertion mutant Ins2 of the cyanobacterium Synechocystis sp. PCC 6803, lacking NAD(P)H:quinone oxidoreductase (NQR) encoded by drgA gene, was characterized by higher sensitivity to quinone-type inhibitors (menadione and plumbagin) than wild type (WT) cells. In photoautotrophically grown cyanobacterial cells more than 60% of NADPH:quinone-reductase activity, as well as all NADPH:dinoseb-reductase activity, was associated with the function of NQR. NQR activity was observed only in soluble fraction of cyanobacterial cells, but not in membrane fraction. The effects of menadione and menadiol on the reduction of Photosystem I reaction center (P700(+)) after its photooxidation in the presence of DCMU were studied using the EPR spectroscopy. The addition of menadione increased the rate of P700(+) reduction in WT cells, whereas in Ins2 mutant the reduction of P700(+) was strongly inhibited. In the presence of menadiol the reduction of P700(+) was accelerated both in WT and Ins2 mutant cells. These data suggest that NQR protects the cyanobacterial cells from the toxic effect of exogenous quinones by their reduction to hydroquinones. These data may also indicate the probable functional homology of Synechocystis sp. PCC 6803 NQR with mammalian and plant NAD(P)H:quinone oxidoreductases (DT-diaphorases).  相似文献   

15.
通过PCR技术从谷氨酸棒杆菌基因组中扩增CglI基因,克隆到载体pMD18-T Simple后测序。将CglI基因亚克隆到表达载体pJL23,构建重组质粒pJL23-CglI,转化大肠杆菌HB101菌株,通过PCR反应筛选鉴定阳性克隆。通过噬菌体感染实验,初步分析了CglI基因在大肠杆菌中的功能活性。  相似文献   

16.
46,XY女性患者SRY基因启动子区域的突变分析   总被引:1,自引:0,他引:1  
大约15%的46,XY女性患者中发现SRY基因编码区突变,其他患者可能是SRY基因的调节区, 包括启动子区域发生了突变,或者其他相关基因发生突变所致。本文采用限制性酶切、PCR-SSCP及银染检测技术,对7例患者SRY基因的启动子区域进行了突变筛查, 结果未发现异常,提示这些患者的病因与SRY基因启动子区域本身无关,结合对患者SRY基因HMG基序DNA的突变分析结果,表明除SRY基因异常外还存在其他导致46,XY女性性反转综合征的遗传机制。 Abstract:Using restriction endonuelease digestion and PCR-SSCP with silver staining,we analyzed the promotor region of SRY gene in seven 46,XY femalcs.The results showed no abnormality,thus ruling out the mutations in the promotor region of the SRY gene as a possible cause of sex reversal in these XY females.In view with the absence of the mutations in the HMG regions of the SRY genes of several patients,it is suggested that SRY gene is not the only gene responsible for testicular development but is one of many hierarchical genes involved in a genetic cascade for sexual differentiation.  相似文献   

17.
The HC-pro gene was amplified by RT-PCR from total RNA of tobacco leaves infected with a N strain of Potato virus Y in Shaanxi, and cloned into the PMD 18-T vector. This HC-pro gene is consisted of 1371 nucleotides, encoding 457 amino acids. It shared the sequence homologyof 82.5%-96.4% nucleotide acid and 92.5%-98.0% in amino acids compared to 9 species of PVY N HC-pro abroad. The HC-pro gene was inserted into prokaryotic expressing vector pBV221, to obtain pBVHC recombinant plasmid in E. coli BL21. SDS-PAGE indicated that HC-pro proteins are successfully expressed in E. coli, Western blotting analysis demonstrated that the antibody against the expressed HC-pro can be used to identify the infected plants .  相似文献   

18.
从甘蓝型油菜 (Brassicanapuscv .H1 65)叶绿体基因组克隆得到了编码核糖体蛋白的基因rps7。经序列分析得知 ,该基因编码区包含 468个核苷酸 ,编码一个分子量为 2 0 1 0 9D、由 1 55个氨基酸组成的蛋白质。该基因的核苷酸和编码的氨基酸序列与烟草对应基因的同源性皆高达 97% ;而与水稻对应基因的同源性分别为 90 %和 84%。该基因不含内含子 ,没有典型的SD序列 ,但在 5’端 - 2 5~- 2 2位发现一个与烟草psbA基因的顺式作用元件RBS2完全相同的TGAT框。与烟草和水稻的同源序列比较 ,该基因在 3’端非编码区变异较大 ,发生了多次插入和缺失。构建了包含该基因在内的一个 1 .0kbDNA的限制性内切酶图谱。所报告的基因序列已登录GenBank。  相似文献   

19.
20.
Photoautotrophically grown cells of the cyanobacterium Synechocystis sp. PCC 6803 wild type and the Ins2 mutant carrying an insertion in the drgA gene encoding soluble NAD(P)H:quinone oxidoreductase (NQR) did not differ in the rate of light-induced oxygen evolution and Photosystem I reaction center (P700+) reduction after its oxidation with a white light pulse. In the presence of DCMU, the rate of P700+ reduction was lower in mutant cells than in wild type cells. Depletion of respiratory substrates after 24 h dark-starvation caused more potent decrease in the rate of P700+ reduction in DrgA mutant cells than in wild type cells. The reduction of P700+ by electrons derived from exogenous glucose was slower in photoautotrophically grown DrgA mutant than in wild type cells. The mutation in the drgA gene did not impair the ability of Synechocystis sp. PCC 6803 cells to oxidize glucose under heterotrophic conditions and did not impair the NDH-1-dependent, rotenone-inhibited electron transfer from NADPH to P700+ in thylakoid membranes of the cyanobacterium. Under photoautotrophic growth conditions, NADPH-dehydrogenase activity in DrgA mutant cells was less than 30% from the level observed in wild type cells. The results suggest that NQR, encoded by the drgA gene, might participate in the regulation of cytoplasmic NADPH oxidation, supplying NADP+ for glucose oxidation in the pentose phosphate cycle of cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号